यूक्लिड की अभिधारणाएँ: Difference between revisions

From Vidyalayawiki

(page updated)
Tags: Replaced Visual edit
No edit summary
Line 1: Line 1:
Delete this article
 
[[Category:यूक्लिड की ज्यामिति]][[Category:कक्षा-9]][[Category:गणित]]
'''Title to be- यूक्लिड की अभिधारणाएँ'''
 
 
ज्यामिति में, अभिधारणा एक कथन है जिसे बुनियादी ज्यामितीय सिद्धांतों के आधार पर सत्य माना जाता है। अभिधारणा का एक उदाहरण यह कथन है "किसी भी दो बिंदुओं से होकर एक ही रेखा खींची जा सकती है।"
 
'''अभिधारणा 1''': किसी एक बिंदु से किसी दूसरे बिंदु तक एक सीधी रेखा खींची जा सकती है।
 
यह अभिधारणा हमें बताती है कि कम से कम एक सीधी रेखा दो अलग-अलग बिंदुओं से होकर गुजरती है, लेकिन यह नहीं कहती कि ऐसी एक से अधिक रेखाएँ नहीं हो सकतीं। हालाँकि, अपने काम में, यूक्लिड ने प्रायः यह मान लिया है, बिना बताए कि दो अलग-अलग बिंदुओं को जोड़ने वाली एक अनोखी रेखा होती है। हम इस परिणाम को एक अभिगृहीत के रूप में इस प्रकार बताते हैं:
 
'''अभिगृहीत 5.1''': दो अलग-अलग बिंदु दिए गए हैं, एक अद्वितीय रेखा है जो उनसे होकर गुजरती है। कितनी रेखाएँ <math>P</math> से होकर गुजरती हैं और <math>Q</math> से भी होकर गुजरती हैं} (चित्र-1 देखें)? केवल एक, अर्थात् रेखा <math>PQ</math>। कितनी रेखाएँ <math>Q</math> से होकर गुजरती हैं और <math>P</math> से भी होकर गुजरती हैं? केवल एक, अर्थात् रेखा <math>PQ</math>। इस प्रकार, उपरोक्त कथन स्वतः स्पष्ट है, और इसलिए इसे एक अभिगृहीत के रूप में लिया जाता है
[[File:Euclid-Axiom-5.1.jpg|left|thumb|चित्र-1 यूक्लिड-अभिगृहीत-5.1|500x500px]]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
'''अभिधारणा 2''': एक समाप्त रेखा अनिश्चित काल तक उत्पादित की जा सकती है।
 
दूसरी अभिधारणा कहती है कि एक रेखाखंड को किसी भी ओर बढ़ाकर एक रेखा बनाई जा सकती है। चित्र-2 देखें
[[File:Euclid-Postulate-2.jpg|left|thumb|चित्र-2 यूक्लिड-अभिधारणा-2|420x420px]]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
'''अभिधारणा 3''': किसी भी केंद्र और किसी भी त्रिज्या के साथ एक वृत्त खींचा जा सकता है।
 
'''अभिधारणा 4''': सभी समकोण एक दूसरे के बराबर होते हैं।
 
'''अभिधारणा 5''': यदि दो सीधी रेखाओं पर पड़ने वाली एक सीधी रेखा, एक ही तरफ के आंतरिक कोणों को मिलाकर दो समकोणों से कम बनाती है, तो दो सीधी रेखाएँ, यदि अनिश्चित रूप से बढ़ाई जाती हैं, तो उस तरफ मिलती हैं जिस तरफ कोणों का योग दो समकोणों से कम होता है।
 
उदाहरण के लिए, चित्र-2 में रेखा <math>PQ</math> रेखाओं <math>AB</math> और <math>CD</math> पर इस प्रकार पड़ती है कि आंतरिक कोणों <math>1</math> और <math>2</math> का योग <math>PQ</math> के बाईं ओर <math>180^\circ </math> से कम है। इसलिए, रेखाएँ <math>AB</math> और <math>CD</math> अंततः <math>PQ</math> के बाईं ओर प्रतिच्छेद करेंगी।
[[File:Euclid-Postulate-5.jpg|left|thumb|चित्र-3 यूक्लिड-अभिधारणा-5]]

Revision as of 11:20, 16 October 2024

Title to be- यूक्लिड की अभिधारणाएँ


ज्यामिति में, अभिधारणा एक कथन है जिसे बुनियादी ज्यामितीय सिद्धांतों के आधार पर सत्य माना जाता है। अभिधारणा का एक उदाहरण यह कथन है "किसी भी दो बिंदुओं से होकर एक ही रेखा खींची जा सकती है।"

अभिधारणा 1: किसी एक बिंदु से किसी दूसरे बिंदु तक एक सीधी रेखा खींची जा सकती है।

यह अभिधारणा हमें बताती है कि कम से कम एक सीधी रेखा दो अलग-अलग बिंदुओं से होकर गुजरती है, लेकिन यह नहीं कहती कि ऐसी एक से अधिक रेखाएँ नहीं हो सकतीं। हालाँकि, अपने काम में, यूक्लिड ने प्रायः यह मान लिया है, बिना बताए कि दो अलग-अलग बिंदुओं को जोड़ने वाली एक अनोखी रेखा होती है। हम इस परिणाम को एक अभिगृहीत के रूप में इस प्रकार बताते हैं:

अभिगृहीत 5.1: दो अलग-अलग बिंदु दिए गए हैं, एक अद्वितीय रेखा है जो उनसे होकर गुजरती है। कितनी रेखाएँ से होकर गुजरती हैं और से भी होकर गुजरती हैं} (चित्र-1 देखें)? केवल एक, अर्थात् रेखा । कितनी रेखाएँ से होकर गुजरती हैं और से भी होकर गुजरती हैं? केवल एक, अर्थात् रेखा । इस प्रकार, उपरोक्त कथन स्वतः स्पष्ट है, और इसलिए इसे एक अभिगृहीत के रूप में लिया जाता है

चित्र-1 यूक्लिड-अभिगृहीत-5.1









अभिधारणा 2: एक समाप्त रेखा अनिश्चित काल तक उत्पादित की जा सकती है।

दूसरी अभिधारणा कहती है कि एक रेखाखंड को किसी भी ओर बढ़ाकर एक रेखा बनाई जा सकती है। चित्र-2 देखें

चित्र-2 यूक्लिड-अभिधारणा-2








अभिधारणा 3: किसी भी केंद्र और किसी भी त्रिज्या के साथ एक वृत्त खींचा जा सकता है।

अभिधारणा 4: सभी समकोण एक दूसरे के बराबर होते हैं।

अभिधारणा 5: यदि दो सीधी रेखाओं पर पड़ने वाली एक सीधी रेखा, एक ही तरफ के आंतरिक कोणों को मिलाकर दो समकोणों से कम बनाती है, तो दो सीधी रेखाएँ, यदि अनिश्चित रूप से बढ़ाई जाती हैं, तो उस तरफ मिलती हैं जिस तरफ कोणों का योग दो समकोणों से कम होता है।

उदाहरण के लिए, चित्र-2 में रेखा रेखाओं और पर इस प्रकार पड़ती है कि आंतरिक कोणों और का योग के बाईं ओर से कम है। इसलिए, रेखाएँ और अंततः के बाईं ओर प्रतिच्छेद करेंगी।

चित्र-3 यूक्लिड-अभिधारणा-5