त्रिविमीय अंतरिक्ष में निर्देशांक्ष और निर्देशांक-तल: Difference between revisions

From Vidyalayawiki

(added content)
(image added)
Line 1: Line 1:


अंतरिक्ष में किसी बिंदु की स्थिति को ज्ञात करने के लिए, हमें एक समकोण निर्देशांक प्रणाली की आवश्यकता होती है। <math>3D</math> में एक निश्चित निर्देशांक प्रणाली चुनने के बाद, उस प्रणाली में किसी भी बिंदु <math>P</math> के निर्देशांक एक क्रमबद्ध <math>3</math>-टपल <math>(x, y, z)</math> द्वारा दिए जा सकते हैं। इसके अलावा, यदि निर्देशांक <math>(x, y, z)</math> पहले से ही ज्ञात हैं, तो हम आसानी से अंतरिक्ष में बिंदु <math>P</math> को ज्ञात कर सकते हैं।
[[File:त्रिविमीय अंतरिक्ष में निर्देशांक्ष और निर्देशांक-तल.jpg|thumb|चित्र ]]


अंतरिक्ष में किसी बिंदु की स्थिति को ज्ञात करने के लिए, हमें एक समकोण निर्देशांक प्रणाली की आवश्यकता होती है। 3D <math>3D</math> में एक निश्चित निर्देशांक प्रणाली चुनने के बाद, उस प्रणाली में किसी भी बिंदु <math>P</math> के निर्देशांक एक क्रमबद्ध <math>3</math>-टपल <math>(x, y, z)</math> द्वारा दिए जा सकते हैं। इसके अलावा, यदि निर्देशांक <math>(x, y, z)</math> पहले से ही ज्ञात हैं, तो हम आसानी से अंतरिक्ष में बिंदु <math>P</math> को ज्ञात कर सकते हैं।
== त्रिविमीय अंतरिक्ष में निर्देशांक्ष और निर्देशांक - तल ==
==त्रि-आयामी निर्देशांक प्रणाली==
बिंदु पर प्रतिच्छेदित करने वाले तीन परस्पर लंब तलों की कल्पना कीजिए ( चित्र )। ये तीनों तल रेखाओं X'OX, Y'OY और ZOZ पर प्रतिच्छेदित करते हैं जिन्हें क्रमश: x- अक्ष, y-अक्ष और z-अक्ष कहते हैं। हम स्पष्टतः देखते हैं कि ये तीनों रेखाएँ परस्पर लंब हैं। इन्हें हम समकोणिक निर्देशांक निकाय कहते हैं। XOY, Y' YOZ और ZOX, तलों को क्रमश: XY-तल, YZ - तल, तथा ZX - तल कहते हैं। ये तीनों तल निर्देशांक तल कहलाते हैं।
मान लीजिए कि अंतरिक्ष में एक बिंदु <math>P</math> है जैसा कि नीचे दिए गए चित्र में दिखाया गया है। यदि हम <math>XY</math> तल पर एक लंबवत <math>PB</math> छोड़ते हैं और फिर बिंदु B से, हम क्रमशः <math>x</math>-अक्ष और <math>y</math>-अक्ष पर लंबवत BA और BC छोड़ते हैं। लंबवत BC, BA और PB की लंबाई क्रमशः <math>x</math>, <math>y</math> और <math>z </math> मानते हुए। इन लंबाइयों <math>x</math>, <math>y</math> और <math>z </math> को त्रि-आयामी अंतरिक्ष में बिंदु <math>P</math> के निर्देशांक के रूप में जाना जाता है। यह ध्यान रखना चाहिए कि किसी बिंदु के निर्देशांक देते समय, हम उन्हें हमेशा क्रम में लिखते हैं ताकि <math>x</math>-अक्ष का निर्देशांक पहले आए, उसके बाद <math>y</math>-अक्ष और <math>z </math>-अक्ष का निर्देशांक आए। इस प्रकार अंतरिक्ष में प्रत्येक बिंदु के लिए, इसके प्रतिनिधित्व के लिए वास्तविक संख्याओं का एक क्रमबद्ध 3-टपल मौजूद होता है।
 
हम कागज के तल को XOY तल लेते हैं। और ZOZ रेखा को तल XOY पर लंबवत लेते हैं। यदि कागज के तल को क्षैतिजतः रखें तो ZOZ रेखा ऊर्ध्वारितः होती है। XY-तल से OZ की दिशा में ऊपर की ओर नापी गई दूरियाँ धनात्मक और OZ' की दिशा में नीचे की ओर नापी गई दूरियाँ ऋणात्मक होती हैं। ठीक उसी प्रकार ZX-तल के दाहिने OY दिशा में नापी गई दूरियाँ धनात्मक और ZX तल के बाएँ OY' की दिशा में नापी गई दूरियाँ ऋणात्मक होती हैं। YZ - तल के सम्मुख OX दिशा में नापी गई दूरियाँ धनात्मक तथा इसके पीछे OX' की दिशा में नापी गई दूरियाँ ऋणात्मक होती हैं। बिंदु को निर्देशांक निकाय का मूल बिंदु कहते हैं। तीन निर्देशांक तल अंतरिक्ष को आठ भागों में बांटते हैं, इन अष्टाशों के नाम XOYZ, X'OYZ, X'OY Z, XOY Z, XOYZ, X'OY Z, X'OY'Z' और XOY'Z' हैं। और जिन्हें क्रमश: I, II, III, VIII द्वारा प्रदर्शित करते हैं।
[[Category:त्रिविमीय ज्यामिति का परिचय]]
[[Category:त्रिविमीय ज्यामिति का परिचय]]
[[Category:गणित]]
[[Category:गणित]]
[[Category:कक्षा-11]]
[[Category:कक्षा-11]]

Revision as of 15:50, 24 October 2024

अंतरिक्ष में किसी बिंदु की स्थिति को ज्ञात करने के लिए, हमें एक समकोण निर्देशांक प्रणाली की आवश्यकता होती है। में एक निश्चित निर्देशांक प्रणाली चुनने के बाद, उस प्रणाली में किसी भी बिंदु के निर्देशांक एक क्रमबद्ध -टपल द्वारा दिए जा सकते हैं। इसके अलावा, यदि निर्देशांक पहले से ही ज्ञात हैं, तो हम आसानी से अंतरिक्ष में बिंदु को ज्ञात कर सकते हैं।

चित्र

त्रिविमीय अंतरिक्ष में निर्देशांक्ष और निर्देशांक - तल

बिंदु पर प्रतिच्छेदित करने वाले तीन परस्पर लंब तलों की कल्पना कीजिए ( चित्र )। ये तीनों तल रेखाओं X'OX, Y'OY और ZOZ पर प्रतिच्छेदित करते हैं जिन्हें क्रमश: x- अक्ष, y-अक्ष और z-अक्ष कहते हैं। हम स्पष्टतः देखते हैं कि ये तीनों रेखाएँ परस्पर लंब हैं। इन्हें हम समकोणिक निर्देशांक निकाय कहते हैं। XOY, Y' YOZ और ZOX, तलों को क्रमश: XY-तल, YZ - तल, तथा ZX - तल कहते हैं। ये तीनों तल निर्देशांक तल कहलाते हैं।

हम कागज के तल को XOY तल लेते हैं। और ZOZ रेखा को तल XOY पर लंबवत लेते हैं। यदि कागज के तल को क्षैतिजतः रखें तो ZOZ रेखा ऊर्ध्वारितः होती है। XY-तल से OZ की दिशा में ऊपर की ओर नापी गई दूरियाँ धनात्मक और OZ' की दिशा में नीचे की ओर नापी गई दूरियाँ ऋणात्मक होती हैं। ठीक उसी प्रकार ZX-तल के दाहिने OY दिशा में नापी गई दूरियाँ धनात्मक और ZX तल के बाएँ OY' की दिशा में नापी गई दूरियाँ ऋणात्मक होती हैं। YZ - तल के सम्मुख OX दिशा में नापी गई दूरियाँ धनात्मक तथा इसके पीछे OX' की दिशा में नापी गई दूरियाँ ऋणात्मक होती हैं। बिंदु को निर्देशांक निकाय का मूल बिंदु कहते हैं। तीन निर्देशांक तल अंतरिक्ष को आठ भागों में बांटते हैं, इन अष्टाशों के नाम XOYZ, X'OYZ, X'OY Z, XOY Z, XOYZ, X'OY Z, X'OY'Z' और XOY'Z' हैं। और जिन्हें क्रमश: I, II, III, VIII द्वारा प्रदर्शित करते हैं।