सदिशों के प्रकार: Difference between revisions

From Vidyalayawiki

No edit summary
No edit summary
 
(6 intermediate revisions by 2 users not shown)
Line 1: Line 1:
Types of Vectors
सदिश, ज्यामितीय इकाइयाँ हैं जिनमें परिमाण और दिशा होती है। सदिश, को एक रेखा द्वारा दर्शाया जा सकता है जिसमें एक बाण चिन्ह उसकी दिशा की ओर संकेत करता है, और इसकी लंबाई सदिश के परिमाण को दर्शाती है। यह कहने के बाद कि सदिश को बाण चिन्ह द्वारा दर्शाया जाता है, उनके पास प्रारंभिक बिंदु और अन्त्य बिंदु होते हैं। सदिश की अवधारणा 200 वर्षों की अवधि में विकसित हुई। सदिश का उपयोग विस्थापन, वेग, त्वरण आदि जैसी भौतिक राशियों को दर्शाने के लिए किया जाता है।


[[Category:बीजगणित]]
इसके अलावा, भौतिकी और इंजीनियरिंग में सदिश के कई अनुप्रयोग हैं। 19वीं शताब्दी के अंत में विद्युत चुम्बकीय प्रेरण के क्षेत्र के आगमन के साथ सदिश का उपयोग प्रारंभ हुआ। यहाँ, हम सदिश की परिभाषा के साथ-साथ सदिश के प्रकार, सदिश के गुण, और बेहतर समझ के लिए हल किए गए उदाहरणों का अध्ययन करेंगे।
 
== परिभाषा ==
सदिश एक लैटिन शब्द है जिसका अर्थ है वाहक। सदिश को बिंदु <math>A</math> से बिंदु  <math>B</math> तक परिभाषित किया जाता है। दो बिंदुओं <math>A</math> और <math>B</math> के बीच की रेखा की लंबाई को सदिश का परिमाण कहा जाता है, और बिंदु <math>A</math> से बिंदु <math>B</math> तक विस्थापन की दिशा को सदिश <math>AB</math> की दिशा कहा जाता है। भौतिकी में सदिश एक महत्वपूर्ण भूमिका निभाते हैं।
 
उदाहरण के लिए, वेग, विस्थापन, त्वरण, बल सभी सदिश मात्राएँ हैं जिनमें परिमाण के साथ-साथ दिशा भी होती है। सदिश को यूक्लिडियन सदिश या स्थानिक सदिश भी कहा जाता है। गणित, भौतिकी, इंजीनियरिंग और कई अन्य क्षेत्रों में सदिश के कई अनुप्रयोग हैं।
 
'''सदिश का संकेतन''': सदिश के निरूपण का मानक रूप है:
 
<math>\overrightarrow{A}=a{\overset{\frown}{i}}+b{\overset{\frown}{j}}+c{\overset{\frown}{k}}</math>
 
जहाँ  <math>a, b, c</math> संख्यात्मक मान हैं और <math>\overset{\frown}{i},\overset{\frown}{j},\overset{\frown}{k}</math>  क्रमशः <math>x</math>-अक्ष, <math>y</math>-अक्ष और <math>z</math>-अक्ष के साथ इकाई सदिश हैं।
 
== सदिशों के प्रकार ==
सदिशों को उनके गुणों जैसे परिमाण, दिशा और अन्य सदिशों के साथ उनके संबंध के आधार पर सदिशों के प्रकार के रूप में अलग-अलग नाम दिए गए हैं। ये विभिन्न प्रकार के [[सदिश]], सदिशों की कई अंकगणितीय संक्रियाएँ, और गणनाएँ करने में सहायक होते हैं।
 
आइए कुछ प्रकार के सदिशों के बारे में जानें:
 
=== शून्य सदिश ===
जिन सदिशों का परिमाण <math>0</math> होता है उन्हें शून्य सदिश कहते हैं, जिन्हें  <math>{\overset{\frown}{0}}= (0,0,0)</math> द्वारा दर्शाया जाता है। शून्य सदिश का परिमाण शून्य होता है और कोई दिशा नहीं होती। इसे सदिशों की योगात्मक पहचान भी कहा जाता है।
 
=== मात्रक सदिश ===
जिन सदिशों का परिमाण <math>1</math> के बराबर होता है उन्हें इकाई सदिश कहते हैं, जिन्हें <math>{\overset{\frown}{a}}</math> द्वारा दर्शाया जाता है। इसे सदिशों की गुणक पहचान भी कहा जाता है। इकाई सदिशों की लंबाई <math>1</math> होती है। इसका उपयोग साधारणतः किसी सदिश की दिशा को दर्शाने के लिए किया जाता है।
 
=== स्थिति सदिश ===
स्थिति सदिशों का उपयोग त्रि-आयामी अंतरिक्ष में सदिशों की स्थिति और गति की दिशा निर्धारित करने के लिए किया जाता है। स्थिति सदिशों का परिमाण और दिशा अन्य निकायों के सापेक्ष बदली जा सकती है। इसे स्थान सदिश भी कहा जाता है।
 
=== समान सदिश ===
दो या दो से अधिक सदिशों को समान कहा जाता है यदि उनके संगत घटक समान हों। समान सदिशों का परिमाण और दिशा समान होती है। उनके आरंभिक और अंतिम बिंदु अलग-अलग हो सकते हैं, लेकिन लंबाई और दिशा समान होनी चाहिए।
 
=== ऋणात्मक सदिश ===
एक सदिश को दूसरे सदिश का ऋणात्मक कहा जाता है, यदि उनके परिमाण समान हों, लेकिन दिशाएँ विपरीत हों। यदि सदिश <math>A</math> और <math>B</math> की लंबाई समान हो, लेकिन दिशाएँ विपरीत हों, तो सदिश <math>A</math> को सदिश <math>B</math> का ऋणात्मक कहा जाता है या इसके विपरीत।
 
=== समानांतर सदिश ===
दो या अधिक सदिशों को समानांतर सदिश कहा जाता है, यदि उनकी दिशा समान हो, लेकिन परिमाण समान न हो। दो समानांतर सदिशों के बीच का कोण शून्य डिग्री होता है। वे सदिश जिनके दिशा कोण में 180 डिग्री(<math>180 ^\circ</math>) का अंतर होता है, उन्हें प्रतिसमानांतर सदिश कहते हैं, अर्थात प्रतिसमानांतर सदिशों की दिशाएँ विपरीत होती हैं।
 
=== लांबिक(ऑर्थोगोनल) सदिश ===
अंतरिक्ष में दो या अधिक सदिशों को लांबिक(ऑर्थोगोनल) कहा जाता है, यदि उनके बीच का कोण 90 डिग्री (<math>90 ^\circ</math>)है। दूसरे शब्दों में, लांबिक सदिशों का डॉट गुणनफल सदैव <math>0</math> होता है।
 
=== सह-आदिम सदिश ===
वे सदिश जिनका आरंभिक बिंदु समान होता है, उन्हें सह-आदिम सदिश कहते हैं।
 
== विभिन्न प्रकार के सदिशों के गुणधर्म ==
सदिशों पर विभिन्न गणितीय संक्रियाएँ लागू की जा सकती हैं जैसे जोड़, घटाव और गुणा। सदिशों के विभिन्न गुणधर्म  नीचे सूचीबद्ध हैं:
 
* सदिशों का योग क्रमविनिमेय और साहचर्य होता है।
 
* <math>\overrightarrow{A}\cdot \overrightarrow{B}= \overrightarrow{B} \cdot \overrightarrow{A}</math>
* <math>\overrightarrow{A}\times \overrightarrow{B}\neq \overrightarrow{B} \times \overrightarrow{A}</math>
* <math>\overset{\frown}{i}\cdot \overset{\frown}{i}=\overset{\frown}{j}\cdot \overset{\frown}{j}=\overset{\frown}{k}\cdot\overset{\frown}{k}=1</math>
* <math>\overset{\frown}{i}\cdot \overset{\frown}{j}=\overset{\frown}{j}\cdot \overset{\frown}{k}=\overset{\frown}{k}\cdot\overset{\frown}{i}=0</math>
* <math>\overset{\frown}{i}\times \overset{\frown}{i}=\overset{\frown}{j}\times \overset{\frown}{j}=\overset{\frown}{k}\times \overset{\frown}{k}=0</math>
* <math>\overset{\frown}{i}\times \overset{\frown}{j}=\overset{\frown}{k};\overset{\frown}{j}\times \overset{\frown}{k}=\overset{\frown}{i};\overset{\frown}{k}\times \overset{\frown}{i}=\overset{\frown}{j}</math>
* <math>\overset{\frown}{j}\times \overset{\frown}{i}=\overset{\frown}{-k};\overset{\frown}{k}\times \overset{\frown}{j}=\overset{\frown}{-i};\overset{\frown}{i}\times \overset{\frown}{k}=\overset{\frown}{-j}</math>
* दो सदिशों का डॉट गुणनफल एक अदिश राशि है और दो सदिशों के तल में स्थित होता है।
* दो सदिशों का वज्र गुणनफल एक सदिश है, जो इन दो सदिशों वाले तल के लंबवत होता है।
 
== सदिशों के अनुप्रयोग ==
 
* वास्तविक जीवन में सदिशों के कुछ महत्वपूर्ण अनुप्रयोग नीचे सूचीबद्ध हैं:
* वस्तु को गति देने के लिए बल किस दिशा में लगाया जाता है, यह सदिशों का उपयोग करके पाया जा सकता है।
* यह समझने के लिए कि गुरुत्वाकर्षण एक ऊर्ध्वाधर गतिमान पिंड पर बल के रूप में कैसे लागू होता है।
* एक समतल तक सीमित पिंड की गति सदिशों का उपयोग करके प्राप्त की जा सकती है।
* सदिश तीन आयामों में एक साथ एक पिंड पर लगाए गए बल को परिभाषित करने में मदद करते हैं।
* संरचना की तुलना में बल अधिक मजबूत है या नहीं और यह टिकेगा या ढह जाएगा, यह जाँचने के लिए इंजीनियरिंग के क्षेत्र में सदिशों का उपयोग किया जाता है।
* विभिन्न दोलन(ऑसिलेटर) में सदिशों का उपयोग किया जाता है।
* 'क्वांटम यांत्रिकी' में भी सदिशों के अपने अनुप्रयोग हैं।
* पाइप में तरल प्रवाह का वेग सदिश क्षेत्र के संदर्भ में निर्धारित किया जा सकता है - उदाहरण के लिए, द्रव यांत्रिकी।
* हम उन्हें सामान्य सापेक्षता में हर जगह देख सकते हैं।
* सदिशों का उपयोग विभिन्न तरंग प्रसार जैसे कंपन प्रसार, ध्वनि प्रसार, AC में किया जाता है
 
== महत्वपूर्ण टिप्पणियाँ ==
 
* लांबिक सदिशों का डॉट गुणनफल सदैव शून्य होता है।
* समानांतर सदिशों का वज्र गुणनफल सदैव शून्य होता है।
* दो या अधिक सदिश संरेखीय होते हैं यदि उनका वज्र गुणनफल शून्य है।
* सदिश का परिमाण एक वास्तविक गैर-ऋणात्मक मान होता है जो इसके परिमाण को दर्शाता है।
 
 
[[Category:सदिश बीजगणित]][[Category:गणित]][[Category:कक्षा-12]]

Latest revision as of 14:46, 10 December 2024

सदिश, ज्यामितीय इकाइयाँ हैं जिनमें परिमाण और दिशा होती है। सदिश, को एक रेखा द्वारा दर्शाया जा सकता है जिसमें एक बाण चिन्ह उसकी दिशा की ओर संकेत करता है, और इसकी लंबाई सदिश के परिमाण को दर्शाती है। यह कहने के बाद कि सदिश को बाण चिन्ह द्वारा दर्शाया जाता है, उनके पास प्रारंभिक बिंदु और अन्त्य बिंदु होते हैं। सदिश की अवधारणा 200 वर्षों की अवधि में विकसित हुई। सदिश का उपयोग विस्थापन, वेग, त्वरण आदि जैसी भौतिक राशियों को दर्शाने के लिए किया जाता है।

इसके अलावा, भौतिकी और इंजीनियरिंग में सदिश के कई अनुप्रयोग हैं। 19वीं शताब्दी के अंत में विद्युत चुम्बकीय प्रेरण के क्षेत्र के आगमन के साथ सदिश का उपयोग प्रारंभ हुआ। यहाँ, हम सदिश की परिभाषा के साथ-साथ सदिश के प्रकार, सदिश के गुण, और बेहतर समझ के लिए हल किए गए उदाहरणों का अध्ययन करेंगे।

परिभाषा

सदिश एक लैटिन शब्द है जिसका अर्थ है वाहक। सदिश को बिंदु से बिंदु तक परिभाषित किया जाता है। दो बिंदुओं और के बीच की रेखा की लंबाई को सदिश का परिमाण कहा जाता है, और बिंदु से बिंदु तक विस्थापन की दिशा को सदिश की दिशा कहा जाता है। भौतिकी में सदिश एक महत्वपूर्ण भूमिका निभाते हैं।

उदाहरण के लिए, वेग, विस्थापन, त्वरण, बल सभी सदिश मात्राएँ हैं जिनमें परिमाण के साथ-साथ दिशा भी होती है। सदिश को यूक्लिडियन सदिश या स्थानिक सदिश भी कहा जाता है। गणित, भौतिकी, इंजीनियरिंग और कई अन्य क्षेत्रों में सदिश के कई अनुप्रयोग हैं।

सदिश का संकेतन: सदिश के निरूपण का मानक रूप है:

जहाँ संख्यात्मक मान हैं और क्रमशः -अक्ष, -अक्ष और -अक्ष के साथ इकाई सदिश हैं।

सदिशों के प्रकार

सदिशों को उनके गुणों जैसे परिमाण, दिशा और अन्य सदिशों के साथ उनके संबंध के आधार पर सदिशों के प्रकार के रूप में अलग-अलग नाम दिए गए हैं। ये विभिन्न प्रकार के सदिश, सदिशों की कई अंकगणितीय संक्रियाएँ, और गणनाएँ करने में सहायक होते हैं।

आइए कुछ प्रकार के सदिशों के बारे में जानें:

शून्य सदिश

जिन सदिशों का परिमाण होता है उन्हें शून्य सदिश कहते हैं, जिन्हें द्वारा दर्शाया जाता है। शून्य सदिश का परिमाण शून्य होता है और कोई दिशा नहीं होती। इसे सदिशों की योगात्मक पहचान भी कहा जाता है।

मात्रक सदिश

जिन सदिशों का परिमाण के बराबर होता है उन्हें इकाई सदिश कहते हैं, जिन्हें द्वारा दर्शाया जाता है। इसे सदिशों की गुणक पहचान भी कहा जाता है। इकाई सदिशों की लंबाई होती है। इसका उपयोग साधारणतः किसी सदिश की दिशा को दर्शाने के लिए किया जाता है।

स्थिति सदिश

स्थिति सदिशों का उपयोग त्रि-आयामी अंतरिक्ष में सदिशों की स्थिति और गति की दिशा निर्धारित करने के लिए किया जाता है। स्थिति सदिशों का परिमाण और दिशा अन्य निकायों के सापेक्ष बदली जा सकती है। इसे स्थान सदिश भी कहा जाता है।

समान सदिश

दो या दो से अधिक सदिशों को समान कहा जाता है यदि उनके संगत घटक समान हों। समान सदिशों का परिमाण और दिशा समान होती है। उनके आरंभिक और अंतिम बिंदु अलग-अलग हो सकते हैं, लेकिन लंबाई और दिशा समान होनी चाहिए।

ऋणात्मक सदिश

एक सदिश को दूसरे सदिश का ऋणात्मक कहा जाता है, यदि उनके परिमाण समान हों, लेकिन दिशाएँ विपरीत हों। यदि सदिश और की लंबाई समान हो, लेकिन दिशाएँ विपरीत हों, तो सदिश को सदिश का ऋणात्मक कहा जाता है या इसके विपरीत।

समानांतर सदिश

दो या अधिक सदिशों को समानांतर सदिश कहा जाता है, यदि उनकी दिशा समान हो, लेकिन परिमाण समान न हो। दो समानांतर सदिशों के बीच का कोण शून्य डिग्री होता है। वे सदिश जिनके दिशा कोण में 180 डिग्री() का अंतर होता है, उन्हें प्रतिसमानांतर सदिश कहते हैं, अर्थात प्रतिसमानांतर सदिशों की दिशाएँ विपरीत होती हैं।

लांबिक(ऑर्थोगोनल) सदिश

अंतरिक्ष में दो या अधिक सदिशों को लांबिक(ऑर्थोगोनल) कहा जाता है, यदि उनके बीच का कोण 90 डिग्री ()है। दूसरे शब्दों में, लांबिक सदिशों का डॉट गुणनफल सदैव होता है।

सह-आदिम सदिश

वे सदिश जिनका आरंभिक बिंदु समान होता है, उन्हें सह-आदिम सदिश कहते हैं।

विभिन्न प्रकार के सदिशों के गुणधर्म

सदिशों पर विभिन्न गणितीय संक्रियाएँ लागू की जा सकती हैं जैसे जोड़, घटाव और गुणा। सदिशों के विभिन्न गुणधर्म नीचे सूचीबद्ध हैं:

  • सदिशों का योग क्रमविनिमेय और साहचर्य होता है।
  • दो सदिशों का डॉट गुणनफल एक अदिश राशि है और दो सदिशों के तल में स्थित होता है।
  • दो सदिशों का वज्र गुणनफल एक सदिश है, जो इन दो सदिशों वाले तल के लंबवत होता है।

सदिशों के अनुप्रयोग

  • वास्तविक जीवन में सदिशों के कुछ महत्वपूर्ण अनुप्रयोग नीचे सूचीबद्ध हैं:
  • वस्तु को गति देने के लिए बल किस दिशा में लगाया जाता है, यह सदिशों का उपयोग करके पाया जा सकता है।
  • यह समझने के लिए कि गुरुत्वाकर्षण एक ऊर्ध्वाधर गतिमान पिंड पर बल के रूप में कैसे लागू होता है।
  • एक समतल तक सीमित पिंड की गति सदिशों का उपयोग करके प्राप्त की जा सकती है।
  • सदिश तीन आयामों में एक साथ एक पिंड पर लगाए गए बल को परिभाषित करने में मदद करते हैं।
  • संरचना की तुलना में बल अधिक मजबूत है या नहीं और यह टिकेगा या ढह जाएगा, यह जाँचने के लिए इंजीनियरिंग के क्षेत्र में सदिशों का उपयोग किया जाता है।
  • विभिन्न दोलन(ऑसिलेटर) में सदिशों का उपयोग किया जाता है।
  • 'क्वांटम यांत्रिकी' में भी सदिशों के अपने अनुप्रयोग हैं।
  • पाइप में तरल प्रवाह का वेग सदिश क्षेत्र के संदर्भ में निर्धारित किया जा सकता है - उदाहरण के लिए, द्रव यांत्रिकी।
  • हम उन्हें सामान्य सापेक्षता में हर जगह देख सकते हैं।
  • सदिशों का उपयोग विभिन्न तरंग प्रसार जैसे कंपन प्रसार, ध्वनि प्रसार, AC में किया जाता है

महत्वपूर्ण टिप्पणियाँ

  • लांबिक सदिशों का डॉट गुणनफल सदैव शून्य होता है।
  • समानांतर सदिशों का वज्र गुणनफल सदैव शून्य होता है।
  • दो या अधिक सदिश संरेखीय होते हैं यदि उनका वज्र गुणनफल शून्य है।
  • सदिश का परिमाण एक वास्तविक गैर-ऋणात्मक मान होता है जो इसके परिमाण को दर्शाता है।