केल्विन प्लैंक का प्रकथन: Difference between revisions

From Vidyalayawiki

Listen

No edit summary
No edit summary
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
Kelvin-Planck's statement
Kelvin-Planck's statement


केल्विन-प्लैंक का कथन, जिसे ऊष्मप्रवैगिकी के दूसरे नियम के केल्विन-प्लैंक कथन के रूप में भी जाना जाता है, उन दो कथनों में से एक है जो ऊष्मप्रवैगिकी के दूसरे नियम को परिभाषित करता है। 19वीं शताब्दी के मध्य में लॉर्ड केल्विन (विलियम थॉमसन) और रुडोल्फ क्लॉज़ियस द्वारा यह कथन तैयार किया गया था, और यह ऊष्मा इंजनों की सीमाओं का वर्णन करता है, जो ऐसे उपकरण हैं जो ऊष्मा ऊर्जा को यांत्रिक कार्यों में परिवर्तित करते हैं।
केल्विन प्लैंक का प्रकथन, जिसे ऊष्मप्रवैगिकी के दूसरे नियम के केल्विन-प्लैंक कथन के रूप में भी जाना जाता है, उन दो कथनों में से एक है जो ऊष्मप्रवैगिकी के दूसरे नियम को परिभाषित करता है। 19वीं शताब्दी के मध्य में लॉर्ड केल्विन (विलियम थॉमसन) और रुडोल्फ क्लॉज़ियस द्वारा यह कथन तैयार किया गया था, और यह ऊष्मा इंजनों की सीमाओं का वर्णन करता है, जो ऐसे उपकरण हैं जो ऊष्मा ऊर्जा को यांत्रिक कार्यों में परिवर्तित करते हैं।


केल्विन-प्लैंक कथन को इस प्रकार व्यक्त किया जा सकता है:
केल्विन-प्लैंक कथन को इस प्रकार व्यक्त किया जा सकता है:
Line 7: Line 7:
"किसी भी प्रणाली के लिए थर्मोडायनामिक चक्र में काम करना असंभव है और एक ही तापमान पर काम कर रहे एक जलाशय से गर्मी हस्तांतरण द्वारा ऊर्जा प्राप्त करते समय काम की शुद्ध मात्रा का उत्पादन करना असंभव है।"
"किसी भी प्रणाली के लिए थर्मोडायनामिक चक्र में काम करना असंभव है और एक ही तापमान पर काम कर रहे एक जलाशय से गर्मी हस्तांतरण द्वारा ऊर्जा प्राप्त करते समय काम की शुद्ध मात्रा का उत्पादन करना असंभव है।"


दूसरे शब्दों में, एक ऊष्मा इंजन का होना असंभव है जो एकल ऊष्मा स्रोत (एक जलाशय) से ऊष्मा लेता है और उस ऊष्मा को बिना किसी अन्य प्रभाव के यांत्रिक कार्य में परिवर्तित करता है। इसका मतलब यह है कि चक्रीय प्रक्रिया में सभी ऊष्मा ऊर्जा को उपयोगी कार्य में परिवर्तित नहीं किया जा सकता है, और इसके कुछ हिस्से को अपशिष्ट ताप के रूप में खारिज कर दिया जाना चाहिए।
दूसरे शब्दों में, एक ऊष्मा इंजन का होना असंभव है जो एकल ऊष्मा स्रोत (एक जलाशय) से ऊष्मा लेता है और उस ऊष्मा को बिना किसी अन्य प्रभाव के यांत्रिक कार्य में परिवर्तित करता है। इसका तात्पर्य  यह है कि चक्रीय प्रक्रिया में सभी ऊष्मा ऊर्जा को उपयोगी कार्य में परिवर्तित नहीं किया जा सकता है, और इसके कुछ हिस्से को अपशिष्ट ताप के रूप में खारिज कर दिया जाना चाहिए।


ऊष्मप्रवैगिकी के दूसरे नियम के केल्विन-प्लैंक कथन का ऊष्मा इंजनों के डिजाइन और संचालन के लिए महत्वपूर्ण प्रभाव है। इसका तात्पर्य यह है कि ऊष्मा इंजनों को ऊष्मा ऊर्जा को यांत्रिक कार्य में कुशलतापूर्वक परिवर्तित करने में सक्षम होने के लिए अलग-अलग तापमानों पर कम से कम दो ताप जलाशयों के बीच काम करना चाहिए। ऊष्मा इंजन उच्च तापमान वाले जलाशय से ऊष्मा को अवशोषित करता है, काम करता है, और फिर अपशिष्ट ऊष्मा को कम तापमान वाले जलाशय में अस्वीकार करता है। दो जलाशयों के बीच तापमान में अंतर गर्मी इंजन की अधिकतम दक्षता निर्धारित करता है, जैसा कि कार्नाट दक्षता द्वारा वर्णित है, जो गर्मी इंजन की दक्षता पर मौलिक सीमा है।
ऊष्मप्रवैगिकी के दूसरे नियम के केल्विन-प्लैंक कथन का ऊष्मा इंजनों के डिजाइन और संचालन के लिए महत्वपूर्ण प्रभाव है। इसका तात्पर्य यह है कि ऊष्मा इंजनों को ऊष्मा ऊर्जा को यांत्रिक कार्य में कुशलतापूर्वक परिवर्तित करने में सक्षम होने के लिए अलग-अलग तापमानों पर कम से कम दो ताप जलाशयों के बीच काम करना चाहिए। ऊष्मा इंजन उच्च तापमान वाले जलाशय से ऊष्मा को अवशोषित करता है, काम करता है, और फिर अपशिष्ट ऊष्मा को कम तापमान वाले जलाशय में अस्वीकार करता है। दो जलाशयों के बीच तापमान में अंतर गर्मी इंजन की अधिकतम दक्षता निर्धारित करता है, जैसा कि कार्नाट दक्षता द्वारा वर्णित है, जो गर्मी इंजन की दक्षता पर मौलिक सीमा है।


ऊष्मप्रवैगिकी के दूसरे नियम के केल्विन-प्लैंक के बयान में इंजीनियरिंग, भौतिकी और पर्यावरण विज्ञान सहित विभिन्न क्षेत्रों में व्यापक अनुप्रयोग हैं। यह एक मूलभूत सिद्धांत है जो प्राकृतिक और इंजीनियर प्रणालियों में ऊर्जा और गर्मी हस्तांतरण के व्यवहार को नियंत्रित करता है और इसके महत्वपूर्ण प्रभाव हैं
ऊष्मप्रवैगिकी के दूसरे नियम के केल्विन प्लैंक का प्रकथन में इंजीनियरिंग, भौतिकी और पर्यावरण विज्ञान सहित विभिन्न क्षेत्रों में व्यापक अनुप्रयोग हैं। यह एक मूलभूत सिद्धांत है जो प्राकृतिक और इंजीनियर प्रणालियों में ऊर्जा और गर्मी हस्तांतरण के व्यवहार को नियंत्रित करता है और इसके महत्वपूर्ण प्रभाव हैं


[[Category:उष्मागतिकी]]
[[Category:उष्मागतिकी]][[Category:कक्षा-11]][[Category:भौतिक विज्ञान]]

Latest revision as of 11:48, 3 August 2023

Kelvin-Planck's statement

केल्विन प्लैंक का प्रकथन, जिसे ऊष्मप्रवैगिकी के दूसरे नियम के केल्विन-प्लैंक कथन के रूप में भी जाना जाता है, उन दो कथनों में से एक है जो ऊष्मप्रवैगिकी के दूसरे नियम को परिभाषित करता है। 19वीं शताब्दी के मध्य में लॉर्ड केल्विन (विलियम थॉमसन) और रुडोल्फ क्लॉज़ियस द्वारा यह कथन तैयार किया गया था, और यह ऊष्मा इंजनों की सीमाओं का वर्णन करता है, जो ऐसे उपकरण हैं जो ऊष्मा ऊर्जा को यांत्रिक कार्यों में परिवर्तित करते हैं।

केल्विन-प्लैंक कथन को इस प्रकार व्यक्त किया जा सकता है:

"किसी भी प्रणाली के लिए थर्मोडायनामिक चक्र में काम करना असंभव है और एक ही तापमान पर काम कर रहे एक जलाशय से गर्मी हस्तांतरण द्वारा ऊर्जा प्राप्त करते समय काम की शुद्ध मात्रा का उत्पादन करना असंभव है।"

दूसरे शब्दों में, एक ऊष्मा इंजन का होना असंभव है जो एकल ऊष्मा स्रोत (एक जलाशय) से ऊष्मा लेता है और उस ऊष्मा को बिना किसी अन्य प्रभाव के यांत्रिक कार्य में परिवर्तित करता है। इसका तात्पर्य यह है कि चक्रीय प्रक्रिया में सभी ऊष्मा ऊर्जा को उपयोगी कार्य में परिवर्तित नहीं किया जा सकता है, और इसके कुछ हिस्से को अपशिष्ट ताप के रूप में खारिज कर दिया जाना चाहिए।

ऊष्मप्रवैगिकी के दूसरे नियम के केल्विन-प्लैंक कथन का ऊष्मा इंजनों के डिजाइन और संचालन के लिए महत्वपूर्ण प्रभाव है। इसका तात्पर्य यह है कि ऊष्मा इंजनों को ऊष्मा ऊर्जा को यांत्रिक कार्य में कुशलतापूर्वक परिवर्तित करने में सक्षम होने के लिए अलग-अलग तापमानों पर कम से कम दो ताप जलाशयों के बीच काम करना चाहिए। ऊष्मा इंजन उच्च तापमान वाले जलाशय से ऊष्मा को अवशोषित करता है, काम करता है, और फिर अपशिष्ट ऊष्मा को कम तापमान वाले जलाशय में अस्वीकार करता है। दो जलाशयों के बीच तापमान में अंतर गर्मी इंजन की अधिकतम दक्षता निर्धारित करता है, जैसा कि कार्नाट दक्षता द्वारा वर्णित है, जो गर्मी इंजन की दक्षता पर मौलिक सीमा है।

ऊष्मप्रवैगिकी के दूसरे नियम के केल्विन प्लैंक का प्रकथन में इंजीनियरिंग, भौतिकी और पर्यावरण विज्ञान सहित विभिन्न क्षेत्रों में व्यापक अनुप्रयोग हैं। यह एक मूलभूत सिद्धांत है जो प्राकृतिक और इंजीनियर प्रणालियों में ऊर्जा और गर्मी हस्तांतरण के व्यवहार को नियंत्रित करता है और इसके महत्वपूर्ण प्रभाव हैं ।