एक अदिश से सदिश का गुणन: Difference between revisions

From Vidyalayawiki

(added category)
(added internal links)
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
Multiplication of Vector by a Scalar


[[Category:बीजगणित]]
सदिश गुणन नियम गणित में सबसे आसान और सबसे प्रभावशाली अवधारणाओं में से एक है। सदिश गुणन किसी भी दो [[दो सदिशों का गुणनफल|सदिशों का गुणनफल]] या तो अदिश के रूप में या सदिश के रूप में ज्ञात करना होता है। सदिशों का गुणन दो रूपों में किया जा सकता है, अर्थात् डॉट गुणनफल और वज्र गुणनफल । यदि किसी सदिश को अदिश से गुणा किया जाता है, तो इसका अर्थ है कि सदिश के परिमाण को किसी संख्या से गुणा किया जाता है।
[[Category:सदिश बीजगणित]]
 
== एक अदिश से सदिश का गुणन ==
यद्यपि सदिश और अदिश राशियाँ विभिन्न प्रकार की भौतिक राशियों का प्रतिनिधित्व करती हैं, लेकिन कभी-कभी दोनों का आपस में मिलना-जुलना आवश्यक हो जाता है। सदिश राशि में अदिश राशि का योग करना उनके आयामों में अंतर के कारण बहुत ही असंभव है। यद्यपि , सदिश राशि को अदिश राशि से गुणा किया जा सकता है। वहीं, इसका विपरीत संभव नहीं है। यानी अदिश राशि को कभी भी सदिश राशि से गुणा नहीं किया जा सकता।
 
[[सदिशों का योगफल|सदिशों]] को अदिश राशियों से गुणा करने के समय, समान राशियों को अंकगणितीय गुणन के अधीन किया जाता है। अर्थात सदिशों के परिमाण को अदिश राशियों के परिमाण से गुणा किया जाता है। सदिशों को अदिश राशियों से गुणा करने पर प्राप्त गुणनफल एक सदिश होता है। गुणनफल सदिश की दिशा उस सदिश के समान होती है जिसे अदिश राशि से गुणा किया जाता है और इसका परिमाण सदिश और अदिश राशियों के गुणनफल से गुणा किए गए परिमाण के गुणनफल के समान बढ़ता है।
 
एक सदिश को, एक अदिश से गुणा किया जा सकता है। लेकिन, एक अदिश राशि को एक सदिश से गुणा नहीं किया जा सकता।
 
जब एक सदिश को एक अदिश से गुणा किया जाता है, तो प्राप्त गुणनफल एक सदिश होता है जिसकी दिशा समान होती है लेकिन परिमाण बढ़ा हुआ होता है
 
== उदाहरण ==
'''उदाहरण 1'''
 
एक निश्चित सदिश पर विचार करें, मान लें कि सदिश ‘<math>a</math>’ को एक अदिश से गुणा किया जाता है जिसका परिमाण <math>0.25</math> है। इस स्थिति में, गुणनफल सदिश एक सदिश है जो एक सदिश को दर्शाता है जिसकी दिशा सदिश ‘<math>a</math>’ के समान है और परिमाण सदिश ‘<math>a</math>’ के <math>\frac{1 }{4}</math> गुना के समान है (क्योंकि <math>0.25</math>,<math>\frac{1 }{4}</math> को दर्शाता है)।
 
'''उदाहरण 2'''
 
भौतिक राशि बल एक सदिश राशि है। किया गया कार्य परिमाण और दिशा दोनों पर निर्भर करता है जिसमें बल वस्तु पर लगाया जाता है। यह बल वास्तव में न्यूटन के रैखिक गति के दूसरे नियम के अनुसार एक सदिश और एक अदिश राशि का गुणनफल है। बल इस प्रकार दिया गया है: <math>F = m \times a</math>उपर्युक्त समीकरण में, '<math>a</math>' त्वरण को दर्शाता है जो एक सदिश राशि है और '<math>m </math>' वस्तु के द्रव्यमान को दर्शाता है जो अदिश राशि है। इसलिए, यह भौतिकी में सदिशों को अदिश राशि से गुणा करने के उदाहरणों में से एक है।
 
'''उदाहरण 3'''
 
मान लीजिए कि कोई भी अंकगणितीय संख्या जो पूरी तरह से इकाई रहित है, उसे अदिश राशि के रूप में लिया जाता है। इस अदिश राशि से सदिशों को गुणा करने पर, प्राप्त गुणनफल प्रारंभिक सदिश का एक स्केल किया हुआ संस्करण होता है। मान लीजिए कि अदिश राशि मानी जाने वाली संख्या 3 है, तो इस अदिश राशि से सदिश को गुणा करने पर गुणनफल सदिश प्राप्त होता है जो प्रारंभिक सदिश के तीन गुना के समान होता है।
 
== अनुप्रयोग ==
सदिशों के अदिश के साथ गुणन के भौतिकी में कई तरह के अनुप्रयोग पाए जाते हैं। सदिश राशियों की कई <math>SI</math> इकाइयाँ सदिश और अदिश के गुणनफल हैं। उदाहरण के लिए, वेग की <math>SI</math>  इकाई मीटर प्रति सेकंड है। वेग एक सदिश राशि है। यह दो अदिश राशियों: लंबाई और समय को एक विशिष्ट दिशा में एक इकाई सदिश के साथ गुणा करके प्राप्त किया जाता है। गणित और भौतिकी में ऐसे कई अन्य उदाहरण हैं जहाँ अदिश के साथ सदिश गुणन का उपयोग किया जाता है।
 
== अदिश गुणन और सदिश गुणन ==
किसी संख्या का अदिश गुणन एक सदिश का अदिश से गुणन है और इसे दो सदिशों के आंतरिक गुणनफल से अलग किया जाना चाहिए।
 
गणित में, सदिश गुणन एक ऐसी तकनीक है जिसका उपयोग दो या अधिक सदिशों को गुणा करने के लिए किया जाता है। इसे पहले सदिश और दूसरे सदिश के गुणनफल के रूप में भी परिभाषित किया जाता है। सदिशों के गुणन के दो प्रकार हैं। एक है अदिश गुणन जिसे डॉट गुणनफल भी कहा जाता है और दूसरा है सदिश गुणन जिसे वज्र गुणनफल कहा जाता है।
 
[[Category:सदिश बीजगणित]][[Category:गणित]][[Category:कक्षा-12]]

Latest revision as of 18:55, 14 December 2024

सदिश गुणन नियम गणित में सबसे आसान और सबसे प्रभावशाली अवधारणाओं में से एक है। सदिश गुणन किसी भी दो सदिशों का गुणनफल या तो अदिश के रूप में या सदिश के रूप में ज्ञात करना होता है। सदिशों का गुणन दो रूपों में किया जा सकता है, अर्थात् डॉट गुणनफल और वज्र गुणनफल । यदि किसी सदिश को अदिश से गुणा किया जाता है, तो इसका अर्थ है कि सदिश के परिमाण को किसी संख्या से गुणा किया जाता है।

एक अदिश से सदिश का गुणन

यद्यपि सदिश और अदिश राशियाँ विभिन्न प्रकार की भौतिक राशियों का प्रतिनिधित्व करती हैं, लेकिन कभी-कभी दोनों का आपस में मिलना-जुलना आवश्यक हो जाता है। सदिश राशि में अदिश राशि का योग करना उनके आयामों में अंतर के कारण बहुत ही असंभव है। यद्यपि , सदिश राशि को अदिश राशि से गुणा किया जा सकता है। वहीं, इसका विपरीत संभव नहीं है। यानी अदिश राशि को कभी भी सदिश राशि से गुणा नहीं किया जा सकता।

सदिशों को अदिश राशियों से गुणा करने के समय, समान राशियों को अंकगणितीय गुणन के अधीन किया जाता है। अर्थात सदिशों के परिमाण को अदिश राशियों के परिमाण से गुणा किया जाता है। सदिशों को अदिश राशियों से गुणा करने पर प्राप्त गुणनफल एक सदिश होता है। गुणनफल सदिश की दिशा उस सदिश के समान होती है जिसे अदिश राशि से गुणा किया जाता है और इसका परिमाण सदिश और अदिश राशियों के गुणनफल से गुणा किए गए परिमाण के गुणनफल के समान बढ़ता है।

एक सदिश को, एक अदिश से गुणा किया जा सकता है। लेकिन, एक अदिश राशि को एक सदिश से गुणा नहीं किया जा सकता।

जब एक सदिश को एक अदिश से गुणा किया जाता है, तो प्राप्त गुणनफल एक सदिश होता है जिसकी दिशा समान होती है लेकिन परिमाण बढ़ा हुआ होता है

उदाहरण

उदाहरण 1

एक निश्चित सदिश पर विचार करें, मान लें कि सदिश ‘’ को एक अदिश से गुणा किया जाता है जिसका परिमाण है। इस स्थिति में, गुणनफल सदिश एक सदिश है जो एक सदिश को दर्शाता है जिसकी दिशा सदिश ‘’ के समान है और परिमाण सदिश ‘’ के गुना के समान है (क्योंकि , को दर्शाता है)।

उदाहरण 2

भौतिक राशि बल एक सदिश राशि है। किया गया कार्य परिमाण और दिशा दोनों पर निर्भर करता है जिसमें बल वस्तु पर लगाया जाता है। यह बल वास्तव में न्यूटन के रैखिक गति के दूसरे नियम के अनुसार एक सदिश और एक अदिश राशि का गुणनफल है। बल इस प्रकार दिया गया है: उपर्युक्त समीकरण में, '' त्वरण को दर्शाता है जो एक सदिश राशि है और '' वस्तु के द्रव्यमान को दर्शाता है जो अदिश राशि है। इसलिए, यह भौतिकी में सदिशों को अदिश राशि से गुणा करने के उदाहरणों में से एक है।

उदाहरण 3

मान लीजिए कि कोई भी अंकगणितीय संख्या जो पूरी तरह से इकाई रहित है, उसे अदिश राशि के रूप में लिया जाता है। इस अदिश राशि से सदिशों को गुणा करने पर, प्राप्त गुणनफल प्रारंभिक सदिश का एक स्केल किया हुआ संस्करण होता है। मान लीजिए कि अदिश राशि मानी जाने वाली संख्या 3 है, तो इस अदिश राशि से सदिश को गुणा करने पर गुणनफल सदिश प्राप्त होता है जो प्रारंभिक सदिश के तीन गुना के समान होता है।

अनुप्रयोग

सदिशों के अदिश के साथ गुणन के भौतिकी में कई तरह के अनुप्रयोग पाए जाते हैं। सदिश राशियों की कई इकाइयाँ सदिश और अदिश के गुणनफल हैं। उदाहरण के लिए, वेग की इकाई मीटर प्रति सेकंड है। वेग एक सदिश राशि है। यह दो अदिश राशियों: लंबाई और समय को एक विशिष्ट दिशा में एक इकाई सदिश के साथ गुणा करके प्राप्त किया जाता है। गणित और भौतिकी में ऐसे कई अन्य उदाहरण हैं जहाँ अदिश के साथ सदिश गुणन का उपयोग किया जाता है।

अदिश गुणन और सदिश गुणन

किसी संख्या का अदिश गुणन एक सदिश का अदिश से गुणन है और इसे दो सदिशों के आंतरिक गुणनफल से अलग किया जाना चाहिए।

गणित में, सदिश गुणन एक ऐसी तकनीक है जिसका उपयोग दो या अधिक सदिशों को गुणा करने के लिए किया जाता है। इसे पहले सदिश और दूसरे सदिश के गुणनफल के रूप में भी परिभाषित किया जाता है। सदिशों के गुणन के दो प्रकार हैं। एक है अदिश गुणन जिसे डॉट गुणनफल भी कहा जाता है और दूसरा है सदिश गुणन जिसे वज्र गुणनफल कहा जाता है।