सदिशों का व्यवकलन: Difference between revisions

From Vidyalayawiki

Listen

No edit summary
 
(14 intermediate revisions by 2 users not shown)
Line 1: Line 1:
Subtraction of vectors
Subtraction of vectors


भौतिकी में, सदिश वे मात्राएँ होती हैं जिनमें परिमाण (आकार) और दिशा दोनों होते हैं। वे अक्सर तीरों द्वारा दर्शाए जाते हैं, जहां तीर की लंबाई परिमाण का प्रतिनिधित्व करती है, और तीर की दिशा सादिश की दिशा दर्शाती है। सदिशों के घटाव में दो सदिशों के बीच अंतर ज्ञात करना शामिल है।
सदिश वे मात्राएँ होती हैं, जिनमें परिमाण (आकार) और दिशा दोनों होते हैं।सादिशों को प्रायः तीरों द्वारा दर्शाया जाता हैं, जहां तीर की लंबाई परिमाण का प्रतिनिधित्व करती है, और तीर की दिशा सादिश की दिशा दर्शाती है। सदिशों के व्यवकलन (घटाव) में दो सदिशों के बीच अंतर ज्ञात करना मुख्य रूप से संमलित है।


सदिशों को घटाने के लिए, हम शीर्ष से पुच्छ ("टिप-टू-टेल") नामक विधि का उपयोग करते हैं। यह इस प्रकार है :
== शीर्ष से पुच्छ ("टिप-टू-टेल") विधि ==
[[File:Vector subtraction (new).svg|thumb|सदिशों का व्यवकलन]]
सदिशों को घटाने के लिए, शीर्ष से पुच्छ ("टिप-टू-टेल") नामक विधि का उपयोग करते हैं।  


# पहला सदिश आरेखित करें: पहले सदिश को दिए गए परिमाण और दिशा के अनुसार आरेखित करके प्रारंभ करें। सादिश  का शुरुआती बिंदु मायने नहीं रखता; आप कोई भी सुविधाजनक बिंदु चुन सकते हैं।
यह इस प्रकार है :
# दूसरा सदिश आरेखित करें: पहले सदिश की नोक (एरोहेड) से, इसके परिमाण और दिशा के अनुसार दूसरा सदिश आरेखित करें। दूसरे सादिश  की नोक परिणामी घटाव सादिश  के अंत बिंदु का प्रतिनिधित्व करती है।
# परिणामी सादिश  खोजें: पहले सादिश  के शुरुआती बिंदु से दूसरे सादिश  के अंत बिंदु तक एक तीर बनाएं। यह परिणामी तीर दो सदिशों के घटाव का प्रतिनिधित्व करता है।


परिणामी सादिश,पहले सादिश से दूसरे सादिश  के घटाव का प्रतिनिधित्व करता है। इसका परिमाण और दिशा मूल सदिशों के परिमाण और दिशाओं पर निर्भर करती है।
===== पहला सदिश आरेखित करें =====
पहले सदिश को दिए गए परिमाण और दिशा के अनुसार आरेखित करके प्रारंभ करें। सादिश का आरंभिक  बिंदु मायने नहीं रखता; आप कोई भी सुविधाजनक बिंदु चुन सकते हैं।


यदि आपके पास उनके घटकों (x और y निर्देशांक) द्वारा दर्शाए गए वैक्टर हैं, तो आप उन्हें घटक-वार घटा सकते हैं। उदाहरण के लिए, मान लें कि आपके पास दो सदिश A और B हैं, जहाँ A = (Aₓ, Aᵧ) और B = (Bₓ, Bᵧ)। सदिशों को घटाने के लिए, आप उनके संबंधित घटकों को घटाते हैं:
===== दूसरा सदिश आरेखित करें =====
पहले सदिश की नोक (एरोहेड) से, इसके परिमाण और दिशा के अनुसार दूसरा सदिश आरेखित करें। दूसरे सादिश  की नोक परिणामी व्यवकलन सादिश  के अंत बिंदु का प्रतिनिधित्व करती है।


परिणामी सदिश R = (Aₓ - Bₓ, Aᵧ - Bᵧ)
===== परिणामी सादिश  खोजें =====
पहले सादिश  के आरंभिक  बिंदु से दूसरे सादिश  के अंत बिंदु तक एक तीर बनाएं। यह परिणामी तीर दो सदिशों के व्यवकलन का प्रतिनिधित्व करता है।


इसका अर्थ यह है कि परिणामी सदिश का x-घटक प्राप्त करने के लिए सदिश A के x-घटक से सदिश B के x-घटक को घटाते हैं, और इसी प्रकार y-घटकों के लिए भी।
परिणामी सादिश,पहले सादिश से दूसरे सादिश  के व्यवकलन का प्रतिनिधित्व करता है। इसका परिमाण और दिशा मूल सदिशों के परिमाण और दिशाओं पर निर्भर करती है।


सदिशों का घटाव भौतिकी में महत्वपूर्ण है क्योंकि यह हमें उन स्थितियों का विश्लेषण करने में मदद करता है जहां एक साथ कई बल या गतियां कार्य कर रही हैं। सदिशों को घटाकर हम इन बलों या गतियों के शुद्ध प्रभाव को निर्धारित कर सकते हैं और उनके संयुक्त प्रभाव को समझ सकते हैं।
== घटक-वार विधि ==
यदि किसी सादिश समूह को उनके घटकों (<math>x </math> और <math>y </math>  निर्देशांक) द्वारा दर्शाया गया है, तो उन्हें घटक-वार घटाया जा सकता है। उदाहरण के लिए, यदि यह मान लीय जाए की दो सदिश <math>A </math> और <math>B</math> हैं, जहाँ <math>A = (A_x, A_y)</math> और <math>B = (B_x, B_y)</math>। सदिशों को घटाने के लिए, उनके संबंधित घटकों को घटा कर परिणामी सादिश उपलब्ध करवाया जाता है।


याद रखें, वैक्टर घटाते समय, आपको परिमाण और दिशा दोनों पर ध्यान देना चाहिए, और परिणामी सादिश  को खोजने के लिए टिप-टू-टेल विधि का पालन करें या घटक-वार घटाव का उपयोग करें।
परिणामी सदिश
[[Category:समतल में गति]]
 
<math>R = (A_x - B_X, A_y - B_y)</math>
 
इसका अर्थ यह है कि परिणामी सदिश का <math>x</math>-घटक प्राप्त करने के लिए सदिश <math>A</math> के <math>x</math>-घटक से सदिश <math>B</math> के <math>x</math>-घटक को घटाते हैं, और इसी प्रकार <math>y</math>-घटकों के लिए भी।
 
सदिशों का व्यवकलन भौतिकी में महत्वपूर्ण है क्योंकि यह उन स्थितियों का विश्लेषण करने में सुविधा करता है, जहां एक साथ, कई बल या गतियां कार्य कर रही हैं। सदिशों को घटाकर इन बलों या गतियों के शुद्ध प्रभाव को निर्धारित कीया जा सकता है और उनके संयुक्त प्रभाव को समझ बढ़ाई जा सकती है।
 
== संक्षेप में ==
सादिश  घटाते समय, परिमाण और दिशा दोनों पर ध्यान देना चाहिए, और परिणामी सादिश  को खोजने के लिए शीर्ष से पुच्छ (टिप-टू-टेल) विधि का पालन करें या घटक-वार व्यवकलन का उपयोग करें।
[[Category:समतल में गति]][[Category:भौतिक विज्ञान]][[Category:कक्षा-11]]

Latest revision as of 13:12, 7 February 2024

Subtraction of vectors

सदिश वे मात्राएँ होती हैं, जिनमें परिमाण (आकार) और दिशा दोनों होते हैं।सादिशों को प्रायः तीरों द्वारा दर्शाया जाता हैं, जहां तीर की लंबाई परिमाण का प्रतिनिधित्व करती है, और तीर की दिशा सादिश की दिशा दर्शाती है। सदिशों के व्यवकलन (घटाव) में दो सदिशों के बीच अंतर ज्ञात करना मुख्य रूप से संमलित है।

शीर्ष से पुच्छ ("टिप-टू-टेल") विधि

सदिशों का व्यवकलन

सदिशों को घटाने के लिए, शीर्ष से पुच्छ ("टिप-टू-टेल") नामक विधि का उपयोग करते हैं।

यह इस प्रकार है :

पहला सदिश आरेखित करें

पहले सदिश को दिए गए परिमाण और दिशा के अनुसार आरेखित करके प्रारंभ करें। सादिश का आरंभिक बिंदु मायने नहीं रखता; आप कोई भी सुविधाजनक बिंदु चुन सकते हैं।

दूसरा सदिश आरेखित करें

पहले सदिश की नोक (एरोहेड) से, इसके परिमाण और दिशा के अनुसार दूसरा सदिश आरेखित करें। दूसरे सादिश की नोक परिणामी व्यवकलन सादिश के अंत बिंदु का प्रतिनिधित्व करती है।

परिणामी सादिश खोजें

पहले सादिश के आरंभिक बिंदु से दूसरे सादिश के अंत बिंदु तक एक तीर बनाएं। यह परिणामी तीर दो सदिशों के व्यवकलन का प्रतिनिधित्व करता है।

परिणामी सादिश,पहले सादिश से दूसरे सादिश के व्यवकलन का प्रतिनिधित्व करता है। इसका परिमाण और दिशा मूल सदिशों के परिमाण और दिशाओं पर निर्भर करती है।

घटक-वार विधि

यदि किसी सादिश समूह को उनके घटकों ( और निर्देशांक) द्वारा दर्शाया गया है, तो उन्हें घटक-वार घटाया जा सकता है। उदाहरण के लिए, यदि यह मान लीय जाए की दो सदिश और हैं, जहाँ और । सदिशों को घटाने के लिए, उनके संबंधित घटकों को घटा कर परिणामी सादिश उपलब्ध करवाया जाता है।

परिणामी सदिश

इसका अर्थ यह है कि परिणामी सदिश का -घटक प्राप्त करने के लिए सदिश के -घटक से सदिश के -घटक को घटाते हैं, और इसी प्रकार -घटकों के लिए भी।

सदिशों का व्यवकलन भौतिकी में महत्वपूर्ण है क्योंकि यह उन स्थितियों का विश्लेषण करने में सुविधा करता है, जहां एक साथ, कई बल या गतियां कार्य कर रही हैं। सदिशों को घटाकर इन बलों या गतियों के शुद्ध प्रभाव को निर्धारित कीया जा सकता है और उनके संयुक्त प्रभाव को समझ बढ़ाई जा सकती है।

संक्षेप में

सादिश घटाते समय, परिमाण और दिशा दोनों पर ध्यान देना चाहिए, और परिणामी सादिश को खोजने के लिए शीर्ष से पुच्छ (टिप-टू-टेल) विधि का पालन करें या घटक-वार व्यवकलन का उपयोग करें।