सादिशों का गुणन: Difference between revisions

From Vidyalayawiki

No edit summary
 
(33 intermediate revisions by 2 users not shown)
Line 1: Line 1:
Multiplication of vectors
Multiplication of vectors


सादिशों का गुणन की अवधारणा आम तौर पर अदिश गुणन और डॉट उत्पाद को संदर्भित करती है। क्रॉस उत्पाद आमतौर पर उच्च-स्तरीय गणित पाठ्यक्रमों में पेश किया जाता है। यहां अदिश गुणन और बिंदु गुणन की व्याख्या दी गई है, जो आमतौर पर ग्रेड 11 के स्तर पर कवर की जाती है:
सादिशों का गुणन की अवधारणा, प्रायः अदिश गुणन और बिंदु गुणनफल को संदर्भित करती है। प्रायः,अनुप्रस्थ गुणन  उच्च-स्तरीय गणित पाठ्यक्रमों में प्रस्तुत किया जाता है,परंतु भौतिकी में भी सादिश गुणन का विशेष महत्व है । यहाँ सदिशों के गुणन के गणितीय एवं भौतिकी पहलू पर चर्चा की गई है


   अदिश गुणज:
== गणित में सदिश गुणन ==
गणित में, दो सदिशों के बीच गुणन, उन दो (या उस से अधिक) सादिशों की कई संक्रियाओं में से एक को संदर्भित कर सकता है। सदिशों के बीच गुणन निम्नलिखित में से किसी भी एक से संबंधित हो सकता है:


   अदिश गुणन में एक सदिश को एक अदिश से गुणा करना शामिल है, जो एक वास्तविक संख्या है। अदिश मान को वेक्टर के प्रत्येक घटक से गुणा किया जाता है। उदाहरण के लिए, यदि आपके पास घटकों (A₁, A₂, A₃) और एक अदिश c के साथ एक वेक्टर A है, तो अदिश गुणन की गणना इस प्रकार की जाती है:
  बिंदु उत्पाद डॉट उत्पाद -


   सी * ए = (सी * ए₁, सी * ए₂, सी * ए₃)
जिसे "स्केलर उत्पाद" के रूप में भी जाना जाता है, एक द्विआधारी संक्रीया (ऑपरेशन) है । यह संक्रीय दो सादिशों को ग्रहण कर,एक आदिश मात्रा निग्रहित करती है। ऐसे दो सदिशों के बिंदु उत्पाद को,दो सदिशों के परिमाण और दोनों सदिशों के बीच के कोण की कोज्या के गुणनफल के रूप में परिभाषित किया जा सकता है। वैकल्पिक रूप से, इसे पहले सादिश (वेक्टर) के दूसरे सादिश (वेक्टर) पर प्रक्षेपण और दूसरे वेक्टर के परिमाण के उत्पाद के रूप में भी परिभाषित किया जा सकता है।


   परिणाम एक नया वेक्टर है जिसमें प्रत्येक घटक को अदिश मान द्वारा स्केल किया गया है।
ऊपर दी गई  भौतिक व्याख्या का गणितीय पहलू नीचे दीया गया है ,


   अदिश गुणन के गुण:
<math>\mathbf{a}\cdot \mathbf{b} = |\mathbf{a}| \, |\mathbf{b}| \cos \theta,</math>


       वितरण गुण: c * (A B) = c * A c * B (जहाँ c एक अदिश राशि है और A, B सदिश हैं)
=====    क्रॉस उत्पाद - =====
जिसे "वेक्टर उत्पाद" के रूप में भी जाना जाता है, दो सादिशों (वैक्टर) पर एक द्विआधारी ऑपरेशन होता है जिसके परिणामस्वरूप दूसरा वेक्टर बनता है। त्रि-आयामी (3-स्पेस) में दो वैक्टरों के क्रॉस उत्पाद को दो वैक्टरों द्वारा निर्धारित समतल के लंबवत वेक्टर के रूप में परिभाषित किया गया है जिसका परिमाण दो वैक्टरों के परिमाण और दो वैक्टरों के बीच के कोण की साइन का उत्पाद है।


       सहयोगी संपत्ति: (सी * डी) * ए = सी * (डी * ए) (जहां सी और डी अदिश हैं और ए एक वेक्टर है)
ऊपर दी गई  भौतिक व्याख्या का गणितीय पहलू नीचे दीया गया है  


       पहचान गुण: 1 * ए = ए (जहाँ 1 गुणक पहचान है)
यदि <math>\mathbf{\hat{n}}</math> ,<math>\mathbf{a} </math> और <math>\mathbf{b}</math> सदिशों द्वारा निर्धारित समतल पर लंबवत इकाई सदिश है,तो


   डॉट उत्पाद (अदिश उत्पाद):
<math>\mathbf{a} \times \mathbf{b} = |\mathbf{a}| \, |\mathbf{b}| \sin \theta \, \mathbf{\hat{n}}</math>


   दो वैक्टरों का डॉट उत्पाद एक अदिश राशि है जो उनके संबंधित घटकों को गुणा करके और उन्हें जोड़कर प्राप्त किया जाता है। इसे प्रतीक "·" द्वारा या बिना किसी ऑपरेटर के केवल सदिशों को एक दूसरे के बगल में रखकर दर्शाया जाता है। उदाहरण के लिए, यदि आपके पास क्रमशः घटकों (A₁, A₂, A₃) और (B₁, B₂, B₃) के साथ दो वेक्टर A और B हैं, तो उनके डॉट उत्पाद की गणना इस प्रकार की जाती है:
== अदिश गुणन और बिंदु गुणन की व्याख्या ==
यहां अदिश गुणन और बिंदु गुणन की व्याख्या दी गई है :


   ए · बी = (ए₁ * बी₁) (ए₂ * बी₂) (ए₃ * बी₃)
=====    अदिश गुणन  =====
   अदिश गुणन में, एक सदिश को, एक अदिश से गुणा करना सम्मलित है, जो एक वास्तविक संख्या है। अदिश मान को सादिश  के प्रत्येक घटक से गुणा किया जाता है। उदाहरण के लिए, यदि <math>A</math> एक सादिश है एवं जिसके घटक<math>(A_1, A_2, A_3)</math> का  एक (अन्य ) अदिश <math>c</math> के साथ गुणन कीया जा रहा है ,तब इस प्रक्रीय का अदिश गुणन की गणना इस प्रकार की जा सकती है :


   परिणाम एक अदिश मान है.
<math>c * A = (c * A_1, c * A_2, c * A_3)</math>


   डॉट उत्पाद के गुण:
   परिणाम एक नया सादिश  है जिसमें प्रत्येक घटक को अदिश मान द्वारा मानित (स्केल) किया गया है।


       क्रमविनिमेय संपत्ति: ए · बी = बी · ए
=====    अदिश गुण फलन के गुण =====


       वितरण गुण: ए · (बी सी) = ए · बी ए · सी (जहां ए, बी, और सी वेक्टर हैं)
======        वितरण गुण ======
<math>c * (A + B) = c * A + c * B</math>(जहाँ <math>c</math> एक अदिश राशि है और <math>A,B</math> सदिश हैं)


       साहचर्य गुण: (सी * ) · बी = सी * (ए · बी) (जहां सी एक अदिश राशि है और ए, बी वेक्टर हैं)
===== साहचर्य गुण =====
<math>(c * d) * A = c * (d * A)</math> (जहां <math>c</math> और <math>d</math> अदिश हैं और <math>A</math> एक सादिश  है)


इन अवधारणाओं और गुणों को समझने से वेक्टर बीजगणित और इसके अनुप्रयोगों की आगे की खोज के लिए एक ठोस आधार मिलेगा।
======        तत्समक गुण ======
[[Category:समतल में गति]]
<math>1 * A = A</math>(जहाँ 1 तत्सम गुणक है)
 
======    बिंदु (डॉट)-गुणनफल (अदिश गुणनफल) ======
   दो सादिशों  का बिंदु गुणनफल एक अदिश राशि है जो उनके संबंधित घटकों को गुणा करके और उन्हें जोड़कर प्राप्त किया जाता है। इसे प्रतीक "·" द्वारा या बिना किसी ऑपरेटर के केवल सदिशों को एक दूसरे के बगल में रखकर दर्शाया जाता है। उदाहरण के लिए, यदि <math>A</math> और <math>B</math> सादिशों के जिनके घटकों को क्रमशः <math>(A_1, A_2, A_3)</math> और <math>(B_1, B_2, B_3)</math> से इंगित कीया जा रहा हो तो,उनके बिंदु गुणनफल की गणना,इस प्रकार की जा सकती है:
 
<math> A \cdot B = (A_1 * B_1) + (A_2 * B_2) + (A_3 * B_3) </math>
 
   बिंदु (डॉट)-गुणनफल (अदिश गुणनफल),<math>A.B</math> परिणाम एक अदिश मान है ।
 
=====     बिंदु गुणनफल के गुण =====
       क्रमविनिमय संपत्ति
 
<math>A\cdot B=B\cdot A</math>
 
=====        वितरण गुण =====
<math>A\cdot (BC)=(A\cdot B)(A\cdot C)</math>
 
(जहां <math>A</math>, <math>B</math>, और <math>C</math> सादिश  हैं)
 
=====        साहचर्य गुण =====
<math>(C * A)\cdot B = C * (A \cdot B),</math>
 
(जहां <math>C</math> एक अदिश राशि है और <math>A</math>, <math>B</math> सादिश  हैं)
 
== संक्षेप में ==
सादिशों से संबंधित इन अवधारणाओं और गुणों को समझने से सादिश  बीजगणित और इसके अनुप्रयोगों के अग्रिम  अनुसंधानों के लिए एक ठोस आधार मिलेगा।
[[Category:समतल में गति]][[Category:भौतिक विज्ञान]][[Category:कक्षा-11]]

Latest revision as of 17:16, 6 February 2024

Multiplication of vectors

सादिशों का गुणन की अवधारणा, प्रायः अदिश गुणन और बिंदु गुणनफल को संदर्भित करती है। प्रायः,अनुप्रस्थ गुणन उच्च-स्तरीय गणित पाठ्यक्रमों में प्रस्तुत किया जाता है,परंतु भौतिकी में भी सादिश गुणन का विशेष महत्व है । यहाँ सदिशों के गुणन के गणितीय एवं भौतिकी पहलू पर चर्चा की गई है ।

गणित में सदिश गुणन

गणित में, दो सदिशों के बीच गुणन, उन दो (या उस से अधिक) सादिशों की कई संक्रियाओं में से एक को संदर्भित कर सकता है। सदिशों के बीच गुणन निम्नलिखित में से किसी भी एक से संबंधित हो सकता है:

  बिंदु उत्पाद डॉट उत्पाद -

जिसे "स्केलर उत्पाद" के रूप में भी जाना जाता है, एक द्विआधारी संक्रीया (ऑपरेशन) है । यह संक्रीय दो सादिशों को ग्रहण कर,एक आदिश मात्रा निग्रहित करती है। ऐसे दो सदिशों के बिंदु उत्पाद को,दो सदिशों के परिमाण और दोनों सदिशों के बीच के कोण की कोज्या के गुणनफल के रूप में परिभाषित किया जा सकता है। वैकल्पिक रूप से, इसे पहले सादिश (वेक्टर) के दूसरे सादिश (वेक्टर) पर प्रक्षेपण और दूसरे वेक्टर के परिमाण के उत्पाद के रूप में भी परिभाषित किया जा सकता है।

ऊपर दी गई भौतिक व्याख्या का गणितीय पहलू नीचे दीया गया है ,

   क्रॉस उत्पाद -

जिसे "वेक्टर उत्पाद" के रूप में भी जाना जाता है, दो सादिशों (वैक्टर) पर एक द्विआधारी ऑपरेशन होता है जिसके परिणामस्वरूप दूसरा वेक्टर बनता है। त्रि-आयामी (3-स्पेस) में दो वैक्टरों के क्रॉस उत्पाद को दो वैक्टरों द्वारा निर्धारित समतल के लंबवत वेक्टर के रूप में परिभाषित किया गया है जिसका परिमाण दो वैक्टरों के परिमाण और दो वैक्टरों के बीच के कोण की साइन का उत्पाद है।

ऊपर दी गई भौतिक व्याख्या का गणितीय पहलू नीचे दीया गया है

यदि , और सदिशों द्वारा निर्धारित समतल पर लंबवत इकाई सदिश है,तो

अदिश गुणन और बिंदु गुणन की व्याख्या

यहां अदिश गुणन और बिंदु गुणन की व्याख्या दी गई है :

   अदिश गुणन

   अदिश गुणन में, एक सदिश को, एक अदिश से गुणा करना सम्मलित है, जो एक वास्तविक संख्या है। अदिश मान को सादिश के प्रत्येक घटक से गुणा किया जाता है। उदाहरण के लिए, यदि एक सादिश है एवं जिसके घटक का एक (अन्य ) अदिश के साथ गुणन कीया जा रहा है ,तब इस प्रक्रीय का अदिश गुणन की गणना इस प्रकार की जा सकती है :

   परिणाम एक नया सादिश है जिसमें प्रत्येक घटक को अदिश मान द्वारा मानित (स्केल) किया गया है।

   अदिश गुण फलन के गुण
       वितरण गुण

(जहाँ एक अदिश राशि है और सदिश हैं)

साहचर्य गुण

(जहां और अदिश हैं और एक सादिश है)

       तत्समक गुण

(जहाँ 1 तत्सम गुणक है)

   बिंदु (डॉट)-गुणनफल (अदिश गुणनफल)

   दो सादिशों का बिंदु गुणनफल एक अदिश राशि है जो उनके संबंधित घटकों को गुणा करके और उन्हें जोड़कर प्राप्त किया जाता है। इसे प्रतीक "·" द्वारा या बिना किसी ऑपरेटर के केवल सदिशों को एक दूसरे के बगल में रखकर दर्शाया जाता है। उदाहरण के लिए, यदि और सादिशों के जिनके घटकों को क्रमशः और से इंगित कीया जा रहा हो तो,उनके बिंदु गुणनफल की गणना,इस प्रकार की जा सकती है:

   बिंदु (डॉट)-गुणनफल (अदिश गुणनफल), परिणाम एक अदिश मान है ।

   बिंदु गुणनफल के गुण

       क्रमविनिमय संपत्ति

       वितरण गुण

(जहां , , और सादिश हैं)

       साहचर्य गुण

(जहां एक अदिश राशि है और , सादिश हैं)

संक्षेप में

सादिशों से संबंधित इन अवधारणाओं और गुणों को समझने से सादिश बीजगणित और इसके अनुप्रयोगों के अग्रिम अनुसंधानों के लिए एक ठोस आधार मिलेगा।