प्रत्यास्थ संघट्टन: Difference between revisions
Listen
No edit summary |
|||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
Elastic collision | Elastic collision | ||
प्रत्यास्थ संघट्टन | भौतिकी में,प्रत्यास्थ संघट्टन, एक अवधारणा है जो दो वस्तुओं के बीच एक प्रकार के संघट्टन (टक्कर) का वर्णन करती है । एक घटनाक्रम के रूप में ,यह वर्णन पूरे तंत्र अथवा प्रणाली (सिस्टम) की गति और गतिज ऊर्जा, संघट्टन के पूर्व व पूर्ण होने के पक्ष में संरक्षण नियमों से बंधित है। शास्त्रीय यांत्रिकी के संदर्भ में प्रत्यास्थ संघट्टों का अध्ययन महत्वपूर्ण है। | ||
जब दो वस्तुएँ टकराती हैं, तो वे संवेग और ऊर्जा को एक-दूसरे में स्थानांतरित कर सकती हैं। एक प्रत्यास्थ संघट्टन में, कुल गति और प्रणाली की कुल गतिज ऊर्जा दोनों संघट्टन से पहले और बाद में स्थिर रहती हैं। इसका | जब दो वस्तुएँ टकराती हैं, तो वे संवेग और ऊर्जा को एक-दूसरे में स्थानांतरित कर सकती हैं। एक प्रत्यास्थ संघट्टन में, कुल गति और प्रणाली की कुल गतिज ऊर्जा दोनों संघट्टन से पहले और बाद में स्थिर रहती हैं। इसका तात्पर्य यह है कि वस्तुएं एक दूसरे से ऊर्जा की हानि के बिना उछलती हैं, जैसे कि बिलियर्ड्स के खेल में जब गेंदें टकराती हैं और अलग हो जाती हैं। | ||
प्रत्यास्थ संघट्टों को | == दो मुख्य सिद्धांत == | ||
प्रत्यास्थ संघट्टों को अधिक योग्यता से समझने के लिए,दो मुख्य सिद्धांतों का वर्णन नीचे दीया गया है । | |||
संवेग का संरक्षण और गतिज ऊर्जा का संरक्षण। | |||
===== '''गति का संरक्षण''' ===== | |||
संवेग गतिमान वस्तुओं का एक गुण है और इसे किसी वस्तु के द्रव्यमान और उसके वेग के गुणनफल के रूप में परिभाषित किया जाता है। एक पृथक प्रणाली में (जहां कोई बाहरी बल कार्य नहीं कर रहा है), संघट्टन से पहले की कुल गति संघट्टन के बाद की कुल गति के बराबर होती है। गणितीय रूप से, इसे इस प्रकार व्यक्त किया जा सकता है: | संवेग गतिमान वस्तुओं का एक गुण है और इसे किसी वस्तु के द्रव्यमान और उसके वेग के गुणनफल के रूप में परिभाषित किया जाता है। एक पृथक प्रणाली में (जहां कोई बाहरी बल कार्य नहीं कर रहा है), संघट्टन से पहले की कुल गति संघट्टन के बाद की कुल गति के बराबर होती है। गणितीय रूप से, इसे इस प्रकार व्यक्त किया जा सकता है: | ||
Line 15: | Line 17: | ||
जहां <math>m1</math> और <math>m2</math> संघट्टन में शामिल वस्तुओं के द्रव्यमान हैं, <math>v1_{initial}</math> और <math>v2_{initial}</math> उनके प्रारंभिक वेग हैं, और <math>v1_{final}</math> और <math>v2_{final}</math> संघट्टन के बाद उनके अंतिम वेग हैं। | जहां <math>m1</math> और <math>m2</math> संघट्टन में शामिल वस्तुओं के द्रव्यमान हैं, <math>v1_{initial}</math> और <math>v2_{initial}</math> उनके प्रारंभिक वेग हैं, और <math>v1_{final}</math> और <math>v2_{final}</math> संघट्टन के बाद उनके अंतिम वेग हैं। | ||
====== '''गतिज ऊर्जा का संरक्षण''' ====== | |||
गतिज ऊर्जा वह ऊर्जा है जो किसी वस्तु में उसकी गति के कारण होती है। एक प्रत्यास्थ संघट्टन में, संघट्टन से पहले की कुल गतिज ऊर्जा संघट्टन के बाद की कुल गतिज ऊर्जा के बराबर होती है। गणितीय रूप से, इसे इस प्रकार व्यक्त किया जा सकता है: | गतिज ऊर्जा वह ऊर्जा है जो किसी वस्तु में उसकी गति के कारण होती है। एक प्रत्यास्थ संघट्टन में, संघट्टन से पहले की कुल गतिज ऊर्जा संघट्टन के बाद की कुल गतिज ऊर्जा के बराबर होती है। गणितीय रूप से, इसे इस प्रकार व्यक्त किया जा सकता है: | ||
Line 23: | Line 24: | ||
यह समीकरण वस्तुओं के द्रव्यमान और उनके वेगों के वर्गों को ध्यान में रखता है। | यह समीकरण वस्तुओं के द्रव्यमान और उनके वेगों के वर्गों को ध्यान में रखता है। | ||
इन सिद्धांतों को लागू करके, उनके प्रारंभिक वेगों और द्रव्यमानों को देखते हुए, | इन सिद्धांतों को लागू करके, उनके प्रारंभिक वेगों और द्रव्यमानों को देखते हुए, एक प्रत्यास्थ संघट्टन के बाद वस्तुओं के अंतिम वेगों के लिए हल कर सकते हैं। ये गणना भविष्यवाणी करने की अनुमति देती है कि टकराव परिदृश्य में वस्तु कैसे स्थानांतरित होंगे और एक-दूसरे के साथ पारस्परिक व्यवहार करेंगे । | ||
प्रत्यास्थ संघट्टों, आदर्श परिदृश्य हैं और | प्रत्यास्थ संघट्टों, आदर्श परिदृश्य हैं और प्रायः वास्तविक जीवन स्थितियों में नहीं होते हैं, क्योंकि संघट्टन की अवधि में प्रायः ऊष्मा ,ध्वनि या विरूपण के रूप में कुछ ऊर्जा न्यून हो जाती है। हालांकि, वे संवेग और गतिज ऊर्जा के संरक्षण की मूलभूत अवधारणाओं को समझने के लिए एक उपयोगी मॉडल प्रदान करते हैं। | ||
प्रत्यास्थ संघट्टों का अध्ययन विभिन्न वास्तविक | == संक्षेप में == | ||
प्रत्यास्थ संघट्टों का अध्ययन विभिन्न वास्तविक जगत के परिदृश्यों का विश्लेषण करने में मदद करता है, जैसे कि बिलियर्ड गेंदों के बीच टकराव, उछलती गेंदें, या यहां तक कि कण भौतिकी प्रयोगों में उप-परमाणु कणों के बीच पारस्परिक व्यवहार । | |||
[[Category:कार्य,शक्ति और ऊर्जा]][[Category:भौतिक विज्ञान]][[Category:कक्षा-11]] | [[Category:कार्य,शक्ति और ऊर्जा]][[Category:भौतिक विज्ञान]][[Category:कक्षा-11]] |
Latest revision as of 12:50, 16 February 2024
Elastic collision
भौतिकी में,प्रत्यास्थ संघट्टन, एक अवधारणा है जो दो वस्तुओं के बीच एक प्रकार के संघट्टन (टक्कर) का वर्णन करती है । एक घटनाक्रम के रूप में ,यह वर्णन पूरे तंत्र अथवा प्रणाली (सिस्टम) की गति और गतिज ऊर्जा, संघट्टन के पूर्व व पूर्ण होने के पक्ष में संरक्षण नियमों से बंधित है। शास्त्रीय यांत्रिकी के संदर्भ में प्रत्यास्थ संघट्टों का अध्ययन महत्वपूर्ण है।
जब दो वस्तुएँ टकराती हैं, तो वे संवेग और ऊर्जा को एक-दूसरे में स्थानांतरित कर सकती हैं। एक प्रत्यास्थ संघट्टन में, कुल गति और प्रणाली की कुल गतिज ऊर्जा दोनों संघट्टन से पहले और बाद में स्थिर रहती हैं। इसका तात्पर्य यह है कि वस्तुएं एक दूसरे से ऊर्जा की हानि के बिना उछलती हैं, जैसे कि बिलियर्ड्स के खेल में जब गेंदें टकराती हैं और अलग हो जाती हैं।
दो मुख्य सिद्धांत
प्रत्यास्थ संघट्टों को अधिक योग्यता से समझने के लिए,दो मुख्य सिद्धांतों का वर्णन नीचे दीया गया है ।
संवेग का संरक्षण और गतिज ऊर्जा का संरक्षण।
गति का संरक्षण
संवेग गतिमान वस्तुओं का एक गुण है और इसे किसी वस्तु के द्रव्यमान और उसके वेग के गुणनफल के रूप में परिभाषित किया जाता है। एक पृथक प्रणाली में (जहां कोई बाहरी बल कार्य नहीं कर रहा है), संघट्टन से पहले की कुल गति संघट्टन के बाद की कुल गति के बराबर होती है। गणितीय रूप से, इसे इस प्रकार व्यक्त किया जा सकता है:
जहां और संघट्टन में शामिल वस्तुओं के द्रव्यमान हैं, और उनके प्रारंभिक वेग हैं, और और संघट्टन के बाद उनके अंतिम वेग हैं।
गतिज ऊर्जा का संरक्षण
गतिज ऊर्जा वह ऊर्जा है जो किसी वस्तु में उसकी गति के कारण होती है। एक प्रत्यास्थ संघट्टन में, संघट्टन से पहले की कुल गतिज ऊर्जा संघट्टन के बाद की कुल गतिज ऊर्जा के बराबर होती है। गणितीय रूप से, इसे इस प्रकार व्यक्त किया जा सकता है:
यह समीकरण वस्तुओं के द्रव्यमान और उनके वेगों के वर्गों को ध्यान में रखता है।
इन सिद्धांतों को लागू करके, उनके प्रारंभिक वेगों और द्रव्यमानों को देखते हुए, एक प्रत्यास्थ संघट्टन के बाद वस्तुओं के अंतिम वेगों के लिए हल कर सकते हैं। ये गणना भविष्यवाणी करने की अनुमति देती है कि टकराव परिदृश्य में वस्तु कैसे स्थानांतरित होंगे और एक-दूसरे के साथ पारस्परिक व्यवहार करेंगे ।
प्रत्यास्थ संघट्टों, आदर्श परिदृश्य हैं और प्रायः वास्तविक जीवन स्थितियों में नहीं होते हैं, क्योंकि संघट्टन की अवधि में प्रायः ऊष्मा ,ध्वनि या विरूपण के रूप में कुछ ऊर्जा न्यून हो जाती है। हालांकि, वे संवेग और गतिज ऊर्जा के संरक्षण की मूलभूत अवधारणाओं को समझने के लिए एक उपयोगी मॉडल प्रदान करते हैं।
संक्षेप में
प्रत्यास्थ संघट्टों का अध्ययन विभिन्न वास्तविक जगत के परिदृश्यों का विश्लेषण करने में मदद करता है, जैसे कि बिलियर्ड गेंदों के बीच टकराव, उछलती गेंदें, या यहां तक कि कण भौतिकी प्रयोगों में उप-परमाणु कणों के बीच पारस्परिक व्यवहार ।