आव्यूह के सहखंडज और व्युत्क्रम: Difference between revisions
No edit summary |
(added content) |
||
(14 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
किसी आव्यूह के व्युत्क्रम की गणना करने के लिए आव्यूह के सहखंडज की आवश्यकता होती है। | |||
[[ | == आव्यूह का सहखंडज == | ||
[[Category:सारणिक]][[Category:गणित]] | आव्यूह <math>A</math> का सहखंडज, <math>A</math> के सहखंड आव्यूह का परिवर्त है। वर्ग आव्यूह <math>A</math> का सहखंडज <math>A</math>(adj.<math>A</math>) द्वारा निरूपित किया जाता है। मान लीजिए <math>A=[a_{ij}]</math>, <math>n</math> कोटि का एक वर्ग आव्यूह है। | ||
किसी आव्यूह का सहखंडज ज्ञात करने में सम्मिलित प्रक्रिया इस प्रकार हैं: | |||
* आव्यूह <math>A</math> के सभी अवयवों का उपसारणिक आव्यूह <math>M</math> को ज्ञात करें । | |||
* आव्यूह <math>M</math> के सभी उपसारणिक अवयवों का सहखंड आव्यूह <math>C</math> को ज्ञात करें । | |||
* सहखंड आव्यूह <math>C</math> का परिवर्त लेते हुए सहखंडज <math>A</math>(adj.<math>A</math>) को ज्ञात करें । | |||
=== 3 X 3आव्यूह का सहखंडज === | |||
<math>A = \begin{bmatrix} 2 & -1 & 3 \\ 0 & 5 & 2 \\ 1 & -1 & -2 \end{bmatrix}</math> | |||
'''प्रक्रिया 1:''' आव्यूह <math>A</math> के सभी अवयवों का उपसारणिक आव्यूह <math>M</math> को ज्ञात करें । | |||
'''''पंक्ति 1:''''' | |||
<math>2 = \begin{vmatrix} 5 & 2 \\ -1 & -2 \end{vmatrix}=(-10-(-2))=-10+2=-8</math> का उपसारणिक | |||
<math>-1 = \begin{vmatrix} 0 & 2 \\ 1 & -2 \end{vmatrix}=(0-2)=-2</math> का उपसारणिक | |||
<math>3 = \begin{vmatrix} 0 & 5 \\ 1 & -1 \end{vmatrix}=(0-5))=-5</math> का उपसारणिक | |||
'''''पंक्ति 2:''''' | |||
<math>0 = \begin{vmatrix} -1 & 3 \\ -1 & -2 \end{vmatrix}=(2-(-3))=2+3=5</math> का उपसारणिक | |||
<math>5 = \begin{vmatrix} 2 & 3 \\ 1 & -2 \end{vmatrix}=(-4-3)=-7</math> का उपसारणिक | |||
<math>2 = \begin{vmatrix} 2 & -1 \\ 1 & -1 \end{vmatrix}=(-2-(-1))=-1</math> का उपसारणिक | |||
'''''पंक्ति 3:''''' | |||
<math>1 = \begin{vmatrix} -1 & 3 \\ 5 & 2 \end{vmatrix}=(-2-15)=-17</math> का उपसारणिक | |||
<math>-1 = \begin{vmatrix} 2 & 3 \\ 0 & 2 \end{vmatrix}=(4-0)=4</math> का उपसारणिक | |||
<math>-2 = \begin{vmatrix} 2 & -1 \\ 0 & 5 \end{vmatrix}=(10-0)=10</math> का उपसारणिक | |||
आव्यूह <math>A</math> का उपसारणिक <math>M= \begin{bmatrix} -8 & -2 & -5 \\ 5 & -7 & -1 \\ -17 & 4 & 10 \end{bmatrix}</math> | |||
'''प्रक्रिया''' '''2:''' आव्यूह <math>M</math> के सभी उपसारणिक अवयवों का सहखंड आव्यूह <math>C</math> को ज्ञात करें । | |||
<math>3 \ X \ 3</math> आव्यूह के सहखंडों को ज्ञात करने के लिए, संबंधित उपसारणिक को उनकी स्थिति के अनुसार नीचे दिए गए चिह्नों से गुणा किया जाना चाहिए। | |||
<math>C= \begin{bmatrix} + & - & + \\ - & + & - \\ + & - & + \end{bmatrix}</math> | |||
आव्यूह <math>A</math> का उपसारणिक <math>M= \begin{bmatrix} -8 & -2 & -5 \\ 5 & -7 & -1 \\ -17 & 4 & 10 \end{bmatrix}</math> | |||
आव्यूह <math>A</math> का सहखंड <math>C= \begin{bmatrix} -8 & 2 & -5 \\ -5 & -7 & 1 \\ -17 & -4 & 10 \end{bmatrix}</math> | |||
'''प्रक्रिया''' '''3:''' सहखंड आव्यूह <math>C</math> का परिवर्त लेते हुए सहखंडज <math>A</math>(adj.<math>A</math>) को ज्ञात करें । | |||
आव्यूह <math>A</math> का सहखंडज(एडजॉइंट) adj <math>A</math> =सहखंड आव्यूह <math>C</math> <math>= \begin{bmatrix} -8 & -5 & -17 \\ 2 & -7 & -4 \\ -5 & 1 & 10 \end{bmatrix}</math>का परिवर्त | |||
== आव्यूह का व्युत्क्रम == | |||
आव्यूह <math>A</math> का व्युत्क्रम, जिसे <math>A^{-1}</math> के रूप में दर्शाया जाता है, आव्यूह के सहखंडज का उपयोग करके पाया जाता है। | |||
A<sup>-1</sup> = (1/|A|) × adj(A). यहाँ, <math>A^{-1}=\left [\frac{1}{\begin{vmatrix} A \end{vmatrix}}\right ] \times adj(A)</math> | |||
यहाँ | |||
* <math>\begin{vmatrix} A \end{vmatrix}</math>= <math>A</math> का सारणिक | |||
* <math>adj(A)</math>= <math>A</math> का सहखंडज | |||
=== 3 X 3 आव्यूह का व्युत्क्रम === | |||
<math>A =</math> <math>{\begin{vmatrix} A \end{vmatrix}} = \begin{vmatrix} 2 & -1 & 3 \\ 0 & 5 & 2 \\ 1 & -1 & -2 \end{vmatrix}=2(-10-(-2))-(-1)(0-2)+3(0-5)=2(-8)-2-15=-33</math> का सारणिक | |||
<math>A =</math> <math>adj(A)</math> <math>= \begin{bmatrix} -8 & -5 & -17 \\ 2 & -7 & -4 \\ -5 & 1 & 10 \end{bmatrix}</math> का सहखंडज | |||
आव्यूह <math>A =</math><math>A^{-1}=\left [\frac{1}{\begin{vmatrix} A \end{vmatrix}}\right ] \times adj(A)</math> का व्युत्क्रम | |||
<math>A^{-1}=\left [\frac{1}{-33}\right ] \times \begin{bmatrix} -8 & -5 & -17 \\ 2 & -7 & -4 \\ -5 & 1 & 10 \end{bmatrix}=\begin{bmatrix} \frac{8}{33} & \frac{5}{33} & \frac{17}{33} \\ - \frac{2}{33} & \frac{7}{33} & \frac{4}{33} \\ \frac{5}{33} & - \frac{1}{33} & | |||
- \frac{10}{33} \end{bmatrix}</math> | |||
[[Category:सारणिक]][[Category:गणित]][[Category:कक्षा-12]] |
Latest revision as of 13:59, 8 February 2024
किसी आव्यूह के व्युत्क्रम की गणना करने के लिए आव्यूह के सहखंडज की आवश्यकता होती है।
आव्यूह का सहखंडज
आव्यूह का सहखंडज, के सहखंड आव्यूह का परिवर्त है। वर्ग आव्यूह का सहखंडज (adj.) द्वारा निरूपित किया जाता है। मान लीजिए , कोटि का एक वर्ग आव्यूह है।
किसी आव्यूह का सहखंडज ज्ञात करने में सम्मिलित प्रक्रिया इस प्रकार हैं:
- आव्यूह के सभी अवयवों का उपसारणिक आव्यूह को ज्ञात करें ।
- आव्यूह के सभी उपसारणिक अवयवों का सहखंड आव्यूह को ज्ञात करें ।
- सहखंड आव्यूह का परिवर्त लेते हुए सहखंडज (adj.) को ज्ञात करें ।
3 X 3आव्यूह का सहखंडज
प्रक्रिया 1: आव्यूह के सभी अवयवों का उपसारणिक आव्यूह को ज्ञात करें ।
पंक्ति 1:
का उपसारणिक
का उपसारणिक
का उपसारणिक
पंक्ति 2:
का उपसारणिक
का उपसारणिक
का उपसारणिक
पंक्ति 3:
का उपसारणिक
का उपसारणिक
का उपसारणिक
आव्यूह का उपसारणिक
प्रक्रिया 2: आव्यूह के सभी उपसारणिक अवयवों का सहखंड आव्यूह को ज्ञात करें ।
आव्यूह के सहखंडों को ज्ञात करने के लिए, संबंधित उपसारणिक को उनकी स्थिति के अनुसार नीचे दिए गए चिह्नों से गुणा किया जाना चाहिए।
आव्यूह का उपसारणिक
आव्यूह का सहखंड
प्रक्रिया 3: सहखंड आव्यूह का परिवर्त लेते हुए सहखंडज (adj.) को ज्ञात करें ।
आव्यूह का सहखंडज(एडजॉइंट) adj =सहखंड आव्यूह का परिवर्त
आव्यूह का व्युत्क्रम
आव्यूह का व्युत्क्रम, जिसे के रूप में दर्शाया जाता है, आव्यूह के सहखंडज का उपयोग करके पाया जाता है।
A-1 = (1/|A|) × adj(A). यहाँ,
यहाँ
- = का सारणिक
- = का सहखंडज
3 X 3 आव्यूह का व्युत्क्रम
का सारणिक
का सहखंडज
आव्यूह का व्युत्क्रम