फलन: Difference between revisions
No edit summary |
(added internal links) |
||
(12 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== परिचय == | |||
इस अनुच्छेद में, हम एक विशेष प्रकार के [[संबंध]] का अध्ययन करेंगे, जिसे '''फलन''' कहते हैं। हम फलन को एक नियम के रूप में देख सकते हैं, जिससे कुछ दिए हुए अवयवों से नए अवयव उत्पन्न होते हैं। फलन को सूचित करने के लिए अनेक पद प्रयुक्त किए जाते हैं, जैसे 'प्रतिचित्र' अथवा 'प्रतिचित्रण' | |||
[[ | == परिभाषा-1 == | ||
एक समुच्चय <math>A</math> से [[समुच्चय और उनका निरूपण|समुच्चय]] <math>B</math> का संबंध, एक फलन कहलाता है, यदि समुच्चय <math>A</math> के प्रत्येक अवयव का समुच्चय <math>B</math> में एक और केवल एक प्रतिबिंब होता है। | |||
दूसरे शब्दों में, फलन <math>f</math>, किसी अरिक्त समुच्चय <math>A</math> से एक अरिक्त समुच्चय <math>B</math> का है , इस प्रकार का संबंध कि <math>f</math> का प्रांत <math>A</math> है तथा <math>f</math> के किसी भी दो भिन्न क्रमित युग्मों के प्रथम घटक समान नहीं हैं। | |||
यदि <math>f</math>, <math>A</math> से <math>B</math> का एक फलन है तथा <math>(a,b)\in f</math>, तो <math>f (a) = b</math>, जहाँ <math>b</math> को <math>f</math> के अंतर्गत <math>a</math> का प्रतििबम्ब तथा a को <math>b</math> का 'पूर्व प्रतिबिंब' कहते हैं। | |||
<math>A</math> से <math>B</math> के फलन <math>f</math> को प्रतीकात्मक रूप में <math>f:A\rightarrow B</math> से निरूपित करते हैं। | |||
नीचे दिए उदाहरणों में बहुत से संबंधों पर विचार करेंगे, जिनमें से कुछ फलन हैं और दूसरे फलन नहीं हैं। | |||
'''उदाहरण 1:''' मान लेते हैं कि <math>N</math> प्राकृत संख्याओं का समुच्चय है और <math>N</math> पर परिभाषित एक संबंध <math>R</math> इस प्रकार है कि <math>R=\{(x,y):y=2x,x,y\in N\}</math>। | |||
<math>R</math> के प्रांत, सहप्रांत तथा परिसर क्या हैं? क्या यह संबंध, एक फलन है हम यह ज्ञात करने का प्रयास करेंगे। | |||
'''हल''' <math>R</math> का प्रांत, [[प्राकृत संख्याएँ|प्राकृत संख्याओं]] का समुच्चय <math>N</math> है । इसका सहप्रांत भी <math>N</math> है। इसका परिसर सम प्राकृत संख्याओं का समुच्चय है। | |||
क्योंकि प्रत्येक प्राकृत संख्या ”<math>n</math>" का एक और केवल एक ही प्रतिबिंब है, इसलिए यह संबंध एक फलन है। | |||
== परिभाषा-2 == | |||
एक ऐसे फलन को जिसका परिसर वास्तविक संख्याओं का समुच्चय या उसका कोई उपसमुच्चय हो, '''वास्तविक मान फलन''' कहते हैं। यदि वास्तविक चर वाले किसी वास्तविक मान फलन का प्रांत भी वास्तविक संख्याओं का समुच्चय अथवा उसका कोई उपसमुच्चय हो तो इसे '''वास्तविक फलन''' भी कहते हैं। | |||
'''उदाहरण 2''': मान लीजिए कि <math>N</math> वास्तविक संख्याओं का समुच्चय है। <math>f:N\rightarrow N</math>, <math>f(x)=2x+2</math>, द्वारा परिभाषित एक वास्तविक मान फलन है। इस परिभाषा का प्रयोग करके, नीचे दी गई सारणी को पूर्ण करने के बाद परिणाम स्वरूप निम्न प्रस्तुत सारणी में देखते हैं। | |||
'''हल''' पूर्ण की हुई सारणी नीचे दी गई है: | |||
{| class="wikitable" | |||
|+ | |||
!<math>x</math> | |||
!<math>1</math> | |||
!<math>2</math> | |||
!<math>3</math> | |||
!<math>4</math> | |||
!<math>5</math> | |||
!6 | |||
!7 | |||
|- | |||
|<math>y</math> | |||
|<math>f(1)=4</math> | |||
|<math>f(1)=6</math> | |||
|<math>f(3)=8</math> | |||
|<math>f(4)=10</math> | |||
|<math>f(5)=12</math> | |||
|<math>f(6)=14</math> | |||
|<math>f(7)=16</math> | |||
|} |
Latest revision as of 05:49, 8 November 2024
परिचय
इस अनुच्छेद में, हम एक विशेष प्रकार के संबंध का अध्ययन करेंगे, जिसे फलन कहते हैं। हम फलन को एक नियम के रूप में देख सकते हैं, जिससे कुछ दिए हुए अवयवों से नए अवयव उत्पन्न होते हैं। फलन को सूचित करने के लिए अनेक पद प्रयुक्त किए जाते हैं, जैसे 'प्रतिचित्र' अथवा 'प्रतिचित्रण'
परिभाषा-1
एक समुच्चय से समुच्चय का संबंध, एक फलन कहलाता है, यदि समुच्चय के प्रत्येक अवयव का समुच्चय में एक और केवल एक प्रतिबिंब होता है।
दूसरे शब्दों में, फलन , किसी अरिक्त समुच्चय से एक अरिक्त समुच्चय का है , इस प्रकार का संबंध कि का प्रांत है तथा के किसी भी दो भिन्न क्रमित युग्मों के प्रथम घटक समान नहीं हैं।
यदि , से का एक फलन है तथा , तो , जहाँ को के अंतर्गत का प्रतििबम्ब तथा a को का 'पूर्व प्रतिबिंब' कहते हैं।
से के फलन को प्रतीकात्मक रूप में से निरूपित करते हैं।
नीचे दिए उदाहरणों में बहुत से संबंधों पर विचार करेंगे, जिनमें से कुछ फलन हैं और दूसरे फलन नहीं हैं।
उदाहरण 1: मान लेते हैं कि प्राकृत संख्याओं का समुच्चय है और पर परिभाषित एक संबंध इस प्रकार है कि ।
के प्रांत, सहप्रांत तथा परिसर क्या हैं? क्या यह संबंध, एक फलन है हम यह ज्ञात करने का प्रयास करेंगे।
हल का प्रांत, प्राकृत संख्याओं का समुच्चय है । इसका सहप्रांत भी है। इसका परिसर सम प्राकृत संख्याओं का समुच्चय है।
क्योंकि प्रत्येक प्राकृत संख्या ”" का एक और केवल एक ही प्रतिबिंब है, इसलिए यह संबंध एक फलन है।
परिभाषा-2
एक ऐसे फलन को जिसका परिसर वास्तविक संख्याओं का समुच्चय या उसका कोई उपसमुच्चय हो, वास्तविक मान फलन कहते हैं। यदि वास्तविक चर वाले किसी वास्तविक मान फलन का प्रांत भी वास्तविक संख्याओं का समुच्चय अथवा उसका कोई उपसमुच्चय हो तो इसे वास्तविक फलन भी कहते हैं।
उदाहरण 2: मान लीजिए कि वास्तविक संख्याओं का समुच्चय है। , , द्वारा परिभाषित एक वास्तविक मान फलन है। इस परिभाषा का प्रयोग करके, नीचे दी गई सारणी को पूर्ण करने के बाद परिणाम स्वरूप निम्न प्रस्तुत सारणी में देखते हैं।
हल पूर्ण की हुई सारणी नीचे दी गई है:
6 | 7 | ||||||
---|---|---|---|---|---|---|---|