अभाज्य संख्याएँ: Difference between revisions

From Vidyalayawiki

No edit summary
 
(3 intermediate revisions by 2 users not shown)
Line 8: Line 8:
ध्यातव्य हो कि <math>1</math> गैर अभाज्य संख्या है , <math>1</math> ना ही तो भाज्य होता है , ना ही अभाज्य ; यह एक अद्वितीय संख्या है ।
ध्यातव्य हो कि <math>1</math> गैर अभाज्य संख्या है , <math>1</math> ना ही तो भाज्य होता है , ना ही अभाज्य ; यह एक अद्वितीय संख्या है ।


== [https://byjus.com/maths/prime-numbers/ अभाज्य संख्याओं के गुण] ==
== अभाज्य संख्याओं के गुण ==
अभाज्य संख्याओं के कुछ गुण नीचे सूचीबद्ध हैं:
अभाज्य संख्याओं के कुछ गुण नीचे सूचीबद्ध हैं:<ref>{{Cite web|url=https://byjus.com/maths/prime-numbers/|title=अभाज्य संख्याओं के गुण}}</ref>


# <math>1</math> से बड़ी प्रत्येक संख्या को कम से कम एक अभाज्य संख्या से विभाजित किया जा सकता है ।
# <math>1</math> से बड़ी प्रत्येक संख्या को कम से कम एक अभाज्य संख्या से विभाजित किया जा सकता है ।
Line 33: Line 33:
उदाहरण के लिए, <math>3</math> और <math>5</math> यमजअभाज्य संख्याएँ हैं, क्योंकि इन दोनों संख्याओं में  <math>2</math>  का अंतर है ।   
उदाहरण के लिए, <math>3</math> और <math>5</math> यमजअभाज्य संख्याएँ हैं, क्योंकि इन दोनों संख्याओं में  <math>2</math>  का अंतर है ।   


यमज अभाज्य संख्याओं के अन्य उदाहरण हैं
यमज अभाज्य संख्याओं के अन्य उदाहरण हैं :


# <math>(5, 7)</math>      <math>[7 - 5 = 2]</math>
# <math>(5, 7)</math>      <math>[7 - 5 = 2]</math>
Line 47: Line 47:
# <math>30</math> और <math>50</math> के बीच कितनी अभाज्य संख्याएँ हैं? उनकी सूची बनाइए।
# <math>30</math> और <math>50</math> के बीच कितनी अभाज्य संख्याएँ हैं? उनकी सूची बनाइए।
# एक अंकीय अभाज्य संख्याएँ कितनी होती हैं? उन्हे लिखें?  
# एक अंकीय अभाज्य संख्याएँ कितनी होती हैं? उन्हे लिखें?  
# दो अंकों की संख्या <math>9A</math> अभाज्य है, <math>A</math> का संभावित मान ज्ञात कीजिए?
# दो अंकों की संख्या <math>9A</math> अभाज्य है, <math>A</math> का संभावित मान ज्ञात कीजिए?


== संदर्भ ==
[[Category:गणित]][[Category:कक्षा-10]]
[[Category:गणित]][[Category:कक्षा-10]]
[[Category:Vidyalaya Completed]]

Latest revision as of 12:51, 18 September 2023

अभाज्य संख्या से बड़ी एक पूर्ण संख्या होती है , जिसमें केवल दो गुणनखंड होते हैं ; स्वयं और अर्थात यदि एक अभाज्य संख्या है, तो इसके एकमात्र गुणनखंड और स्वयं ही होंगे। एक अभाज्य संख्या को शेषफल, दशमलव या अंश छोड़े बिना किसी अन्य धनात्मक पूर्णांक से विभाजित नहीं किया जा सकता है। संख्या सिद्धांत में गणितज्ञों द्वारा अभाज्य संख्याओं को अक्सर निर्माण खंड के रूप में देखा जाता है। अंकगणित के मौलिक प्रमेय में कहा गया है कि एक संयुक्त संख्या को अभाज्य संख्याओं के गुणन के रूप में व्यक्त किया जा सकता है ।

उदाहरण

अभाज्य संख्याओं के उदाहरण है ।

ध्यातव्य हो कि गैर अभाज्य संख्या है , ना ही तो भाज्य होता है , ना ही अभाज्य ; यह एक अद्वितीय संख्या है ।

अभाज्य संख्याओं के गुण

अभाज्य संख्याओं के कुछ गुण नीचे सूचीबद्ध हैं:[1]

  1. से बड़ी प्रत्येक संख्या को कम से कम एक अभाज्य संख्या से विभाजित किया जा सकता है ।
  2. से बड़े प्रत्येक सम धनात्मक पूर्णांक को दो अभाज्य संख्याओं के योग के रूप में व्यक्त किया जा सकता है ।
  3. को छोड़कर अन्य सभी अभाज्य संख्याएँ विषम हैं अर्थात हम कह सकते हैं कि एकमात्र सम अभाज्य संख्या है ।
  4. दो अभाज्य संख्याएँ सदैव एक दूसरे की सहअभाज्य होती हैं ।
  5. प्रत्येक भाज्य संख्या को अभाज्य गुणनखंडों में विभाजित किया जा सकता है , और व्यक्तिगत रूप से ये सभी अद्वितीय हैं ।

सहअभाज्य संख्याएँ

दो संख्याएँ एक-दूसरे की सहअभाज्य कहलाती हैं , यदि उनका उच्चतम समापवर्तक ​​है।

उदाहरण के लिए, और सहअभाज्य हैं,

क्योंकि, इन दोनों संख्याओं का उभयनिष्ठ गुणनखंड केवल है; अतः यह दोनों संख्याएं आपस में सहअभाज्य हैं ।

यमज अभाज्य संख्याएं

वे अभाज्य संख्याएं जिनके बीच केवल एक भाज्य संख्या होती है, उन्हें यमज अभाज्य संख्याएं कहा जाता है । सरल शब्दों में हम कह सकते हैं की अभाज्य संख्याओं का ऐसा युग्म जिसमें केवल दो का अंतर होता है , यमज अभाज्य संख्याएं कहलाती है ।

उदाहरण के लिए, और यमजअभाज्य संख्याएँ हैं, क्योंकि इन दोनों संख्याओं में का अंतर है ।

यमज अभाज्य संख्याओं के अन्य उदाहरण हैं :

अभ्यास प्रश्न

  1. से कम सभी अभाज्य संख्याओं का योग ज्ञात कीजिए?
  2. और के बीच कितनी अभाज्य संख्याएँ हैं? उनकी सूची बनाइए।
  3. एक अंकीय अभाज्य संख्याएँ कितनी होती हैं? उन्हे लिखें?
  4. दो अंकों की संख्या अभाज्य है, का संभावित मान ज्ञात कीजिए?

संदर्भ

  1. "अभाज्य संख्याओं के गुण".