ध्रुवण: Difference between revisions

From Vidyalayawiki

Listen

No edit summary
 
(4 intermediate revisions by one other user not shown)
Line 1: Line 1:
Polarisation
Polarisation


ध्रुवीकरण से तात्पर्य किसी विद्युत चुम्बकीय तरंग, जैसे प्रकाश, के दोलनों के एक विशेष दिशा में अभिविन्यास से है। यह विद्युत क्षेत्र वेक्टर के संरेखण का वर्णन करता है क्योंकि तरंग अंतरिक्ष के माध्यम से फैलती है। प्रकाशिकी में ध्रुवीकरण को समझना महत्वपूर्ण है, क्योंकि यह प्रभावित करता है कि प्रकाश विभिन्न सामग्रियों के साथ कैसे संपर्क करता है और इसे विशिष्ट अनुप्रयोगों के लिए कैसे नियंत्रित किया जा सकता है।
ध्रुवण से तात्पर्य किसी विद्युत चुम्बकीय तरंग, जैसे प्रकाश, के दोलनों के एक विशेष दिशा में अभिविन्यास से है। यह विद्युत क्षेत्र वेक्टर के संरेखण का वर्णन करता है क्योंकि तरंग अंतरिक्ष के माध्यम से फैलती है। प्रकाशिकी में ध्रुवण को समझना महत्वपूर्ण है, क्योंकि यह प्रभावित करता है कि प्रकाश विभिन्न सामग्रियों के साथ कैसे संपर्क करता है और इसे विशिष्ट अनुप्रयोगों के लिए कैसे नियंत्रित किया जा सकता है।


== गणितीय प्रतिनिधित्व ==
== गणितीय प्रतिनिधित्व ==
Line 10: Line 10:
जहाँ:
जहाँ:


   E(t) एक निश्चित समय टीटी पर विद्युत क्षेत्र वेक्टर है।
*    E(t) एक निश्चित समय t पर विद्युत क्षेत्र वेक्टर है।
*    E0​ विद्युत क्षेत्र का आयाम है, जो विद्युत क्षेत्र वेक्टर के अधिकतम परिमाण को दर्शाता है।
*    ω तरंग की कोणीय आवृत्ति है।
*    t समय है.
*    ϕ चरण कोण है, जो तरंग के प्रारंभिक चरण को निर्धारित करता है।
*    E^ इकाई वेक्टर है जो ध्रुवण की दिशा निर्दिष्ट करता है।


   E0​ विद्युत क्षेत्र का आयाम है, जो विद्युत क्षेत्र वेक्टर के अधिकतम परिमाण को दर्शाता है।
यूनिट वेक्टर e^ ध्रुवण की दिशा का प्रतिनिधित्व करता है, और इसे x, y, और z दिशाओं में यूनिट वैक्टर के संयोजन के रूप में परिभाषित किया जा सकता है (अक्सर i^, j^, और k^ के रूप में दर्शाया जाता है)।


   ω तरंग की कोणीय आवृत्ति है।
== रैखिक ध्रुवण के लिए ==
 
e^ को आमतौर पर इस प्रकार लिखा जाता है:
   t समय है.
 
   ϕ चरण कोण है, जो तरंग के प्रारंभिक चरण को निर्धारित करता है।
 
   E^ इकाई वेक्टर है जो ध्रुवीकरण की दिशा निर्दिष्ट करता है।
 
यूनिट वेक्टर e^ ध्रुवीकरण की दिशा का प्रतिनिधित्व करता है, और इसे x, y, और z दिशाओं में यूनिट वैक्टर के संयोजन के रूप में परिभाषित किया जा सकता है (अक्सर i^, j^, और k^ के रूप में दर्शाया जाता है)। रैखिक ध्रुवीकरण के लिए, e^ को आमतौर पर इस प्रकार लिखा जाता है:


<math>\hat{e}=cos(\theta) \hat{i} + sin(\theta) \hat{j} </math>​
<math>\hat{e}=cos(\theta) \hat{i} + sin(\theta) \hat{j} </math>​
Line 28: Line 26:
जहाँ:
जहाँ:


   θ ध्रुवीकरण का कोण है, जो एक संदर्भ दिशा, अक्सर x -अक्ष के सापेक्ष विद्युत क्षेत्र वेक्टर के अभिविन्यास को निर्दिष्ट करता है।
θ ध्रुवण का कोण है, जो एक संदर्भ दिशा, अक्सर x -अक्ष के सापेक्ष विद्युत क्षेत्र वेक्टर के अभिविन्यास को निर्दिष्ट करता है।


इस समीकरण में, E⃗(t) समय t के फलन के रूप में ध्रुवीकृत तरंग के विद्युत क्षेत्र वेक्टर का प्रतिनिधित्व करता है। यह e^ की दिशा द्वारा परिभाषित विमान तक सीमित रहते हुए एक आयाम E0​, कोणीय आवृत्ति ω और एक प्रारंभिक चरण ϕ के साथ साइनसॉइडल रूप से दोलन करता है। कोण θ दोलन के इस तल का अभिविन्यास निर्धारित करता है।
====== इस समीकरण में ======
E⃗(t) समय t के फलन के रूप में ध्रुवीकृत तरंग के विद्युत क्षेत्र वेक्टर का प्रतिनिधित्व करता है। यह e^ की दिशा द्वारा परिभाषित विमान तक सीमित रहते हुए एक आयाम E0​, कोणीय आवृत्ति ω और एक प्रारंभिक चरण ϕ के साथ साइनसॉइडल रूप से दोलन करता है। कोण θ दोलन के इस तल का अभिविन्यास निर्धारित करता है।


== ध्रुवीकरण का महत्व ==
== ध्रुवण का महत्व ==
   ध्रुवीकरण प्रकाशिकी में एक महत्वपूर्ण भूमिका निभाता है, क्योंकि यह निर्धारित करता है कि प्रकाश सामग्री के साथ कैसे संपर्क करता है, जिसमें प्रतिबिंब, अपवर्तन और ध्रुवीकरण फिल्टर के माध्यम से संचरण शामिल है।
ध्रुवण प्रकाशिकी में एक महत्वपूर्ण भूमिका निभाता है, क्योंकि यह निर्धारित करता है कि प्रकाश सामग्री के साथ कैसे संपर्क करता है, जिसमें प्रतिबिंब, अपवर्तन और ध्रुवण फिल्टर के माध्यम से संचरण शामिल है।


   ध्रुवीकृत प्रकाश का उपयोग विभिन्न अनुप्रयोगों में किया जाता है, जिसमें 3डी ग्लास, लिक्विड क्रिस्टल डिस्प्ले (एलसीडी), और धूप के चश्मे में चमक में कमी शामिल है।
ध्रुवीकृत प्रकाश का उपयोग विभिन्न अनुप्रयोगों में किया जाता है, जिसमें 3डी ग्लास, लिक्विड क्रिस्टल डिस्प्ले (एलसीडी), और धूप के चश्मे में चमक में कमी शामिल है।


== संक्षेप में ==
== संक्षेप में ==
तरंग प्रकाशिकी में ध्रुवीकरण एक विद्युत चुम्बकीय तरंग के विद्युत क्षेत्र वेक्टर के अभिविन्यास को संदर्भित करता है। इस अभिविन्यास को गणितीय समीकरणों द्वारा वर्णित किया गया है जिसमें आयाम, आवृत्ति, चरण कोण और ध्रुवीकरण की दिशा शामिल है। कई ऑप्टिकल अनुप्रयोगों और घटनाओं के लिए ध्रुवीकरण को समझना आवश्यक है।
तरंग प्रकाशिकी में ध्रुवण एक विद्युत चुम्बकीय तरंग के विद्युत क्षेत्र वेक्टर के अभिविन्यास को संदर्भित करता है। इस अभिविन्यास को गणितीय समीकरणों द्वारा वर्णित किया गया है जिसमें आयाम, आवृत्ति, चरण कोण और ध्रुवण की दिशा शामिल है। कई ऑप्टिकल अनुप्रयोगों और घटनाओं के लिए ध्रुवण को समझना आवश्यक है।


[[Category:तरंग प्रकाशिकी]][[Category:कक्षा-12]][[Category:भौतिक विज्ञान]]
[[Category:तरंग प्रकाशिकी]][[Category:कक्षा-12]][[Category:भौतिक विज्ञान]]

Latest revision as of 14:49, 24 September 2024

Polarisation

ध्रुवण से तात्पर्य किसी विद्युत चुम्बकीय तरंग, जैसे प्रकाश, के दोलनों के एक विशेष दिशा में अभिविन्यास से है। यह विद्युत क्षेत्र वेक्टर के संरेखण का वर्णन करता है क्योंकि तरंग अंतरिक्ष के माध्यम से फैलती है। प्रकाशिकी में ध्रुवण को समझना महत्वपूर्ण है, क्योंकि यह प्रभावित करता है कि प्रकाश विभिन्न सामग्रियों के साथ कैसे संपर्क करता है और इसे विशिष्ट अनुप्रयोगों के लिए कैसे नियंत्रित किया जा सकता है।

गणितीय प्रतिनिधित्व

ध्रुवीकृत विद्युत चुम्बकीय तरंग का गणितीय प्रतिनिधित्व इस प्रकार व्यक्त किया जा सकता है:

जहाँ:

  •    E(t) एक निश्चित समय t पर विद्युत क्षेत्र वेक्टर है।
  •    E0​ विद्युत क्षेत्र का आयाम है, जो विद्युत क्षेत्र वेक्टर के अधिकतम परिमाण को दर्शाता है।
  •    ω तरंग की कोणीय आवृत्ति है।
  •    t समय है.
  •    ϕ चरण कोण है, जो तरंग के प्रारंभिक चरण को निर्धारित करता है।
  •    E^ इकाई वेक्टर है जो ध्रुवण की दिशा निर्दिष्ट करता है।

यूनिट वेक्टर e^ ध्रुवण की दिशा का प्रतिनिधित्व करता है, और इसे x, y, और z दिशाओं में यूनिट वैक्टर के संयोजन के रूप में परिभाषित किया जा सकता है (अक्सर i^, j^, और k^ के रूप में दर्शाया जाता है)।

रैखिक ध्रुवण के लिए

e^ को आमतौर पर इस प्रकार लिखा जाता है:

जहाँ:

θ ध्रुवण का कोण है, जो एक संदर्भ दिशा, अक्सर x -अक्ष के सापेक्ष विद्युत क्षेत्र वेक्टर के अभिविन्यास को निर्दिष्ट करता है।

इस समीकरण में

E⃗(t) समय t के फलन के रूप में ध्रुवीकृत तरंग के विद्युत क्षेत्र वेक्टर का प्रतिनिधित्व करता है। यह e^ की दिशा द्वारा परिभाषित विमान तक सीमित रहते हुए एक आयाम E0​, कोणीय आवृत्ति ω और एक प्रारंभिक चरण ϕ के साथ साइनसॉइडल रूप से दोलन करता है। कोण θ दोलन के इस तल का अभिविन्यास निर्धारित करता है।

ध्रुवण का महत्व

ध्रुवण प्रकाशिकी में एक महत्वपूर्ण भूमिका निभाता है, क्योंकि यह निर्धारित करता है कि प्रकाश सामग्री के साथ कैसे संपर्क करता है, जिसमें प्रतिबिंब, अपवर्तन और ध्रुवण फिल्टर के माध्यम से संचरण शामिल है।

ध्रुवीकृत प्रकाश का उपयोग विभिन्न अनुप्रयोगों में किया जाता है, जिसमें 3डी ग्लास, लिक्विड क्रिस्टल डिस्प्ले (एलसीडी), और धूप के चश्मे में चमक में कमी शामिल है।

संक्षेप में

तरंग प्रकाशिकी में ध्रुवण एक विद्युत चुम्बकीय तरंग के विद्युत क्षेत्र वेक्टर के अभिविन्यास को संदर्भित करता है। इस अभिविन्यास को गणितीय समीकरणों द्वारा वर्णित किया गया है जिसमें आयाम, आवृत्ति, चरण कोण और ध्रुवण की दिशा शामिल है। कई ऑप्टिकल अनुप्रयोगों और घटनाओं के लिए ध्रुवण को समझना आवश्यक है।