ध्वनि कक्षा-9: Difference between revisions
Listen
No edit summary |
|||
(8 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
ध्वनि, उस कंपन या विक्षोभ को संदर्भित करती है, जो एक माध्यम से यात्रा करता है, साधारणतः हवा, और हमारे कानों द्वारा इसका पता लगाया जा सकता है। ध्वनि ऊर्जा का वह रूप है, जो उस माध्यम में (जिसमे ध्वनि कंपन या विक्षोभ के रूप में विद्यमान होती है) ,भौतिक रूप से अणुओं के संपीड़न और विरलन (फैलने) से उत्पन्न होती है। | |||
जब कोई वस्तु कंपन | जब कोई वस्तु कंपन की अवस्था में है, तो वह आसपास के वायु अणुओं में विक्षोभ पैदा कर सकती है। ये कंपन हवा के अणुओं को एक साथ संपीड़ित करने और फिर अलग-अलग फैलाने का कारण बनते हैं, जिससे उच्च दबाव और निम्न दबाव क्षेत्रों का एक विन्यास (पैटर्न) बनता है। संपीड़न और विरलन का यह प्रतिमान, ध्वनि तरंग के रूप में हवा के माध्यम से फैलता है। | ||
== ध्वनि तरंगों की विशेषता == | |||
====== आवृत्ति ====== | ====== आवृत्ति ====== | ||
यह प्रति सेकंड कंपन या चक्र की संख्या को संदर्भित करता है और इसे हर्ट्ज़ (हर्ट्ज) में मापा जाता है। उच्च आवृत्ति की ध्वनि तरंगों का तारत्व अधिक होता है, जबकि कम आवृत्ति की ध्वनि तरंगों का तारत्व कम होता है। उदाहरण के लिए, एक उच्च तारत्व वाली सीटी उच्च आवृत्ति वाली ध्वनि तरंगें उत्पन्न करती है, जबकि कम तारत्व वाली ड्रम कम आवृत्ति वाली ध्वनि तरंगें उत्पन्न करती है। | यह प्रति सेकंड कंपन या चक्र की संख्या को संदर्भित करता है और इसे हर्ट्ज़ (हर्ट्ज) में मापा जाता है। उच्च आवृत्ति की ध्वनि तरंगों का तारत्व अधिक होता है, जबकि कम आवृत्ति की ध्वनि तरंगों का तारत्व कम होता है। उदाहरण के लिए, एक उच्च तारत्व वाली सीटी उच्च आवृत्ति वाली ध्वनि तरंगें उत्पन्न करती है, जबकि कम तारत्व वाली ड्रम कम आवृत्ति वाली ध्वनि तरंगें उत्पन्न करती है। | ||
Line 13: | Line 11: | ||
====== तरंग दैर्ध्य ====== | ====== तरंग दैर्ध्य ====== | ||
यह एक ध्वनि तरंग में दो लगातार बिंदुओं के बीच की दूरी को संदर्भित करता है जो चरण में हैं (जैसे, दो संपीडन या दो विरलन)। यह ध्वनि तरंग की आवृत्ति से संबंधित है, जिसमें उच्च आवृत्तियाँ कम तरंग दैर्ध्य वाली होती हैं और कम आवृत्तियाँ लंबी तरंग दैर्ध्य वाली होती हैं। | यह एक ध्वनि तरंग में दो लगातार बिंदुओं के बीच की दूरी को संदर्भित करता है जो चरण में हैं (जैसे, दो संपीडन या दो विरलन)। यह ध्वनि तरंग की आवृत्ति से संबंधित है, जिसमें उच्च आवृत्तियाँ कम तरंग दैर्ध्य वाली होती हैं और कम आवृत्तियाँ लंबी तरंग दैर्ध्य वाली होती हैं।[[File:FA-18 Hornet breaking sound barrier (7 July 1999) - filtered.jpg|thumb|एक लंबी उड़ान के उस क्षणिक अंतराल में,जब एक लड़ाकू जहाज ,ध्वनि की गति से अधिक का वेग लेने को तैयार हो, यह विमान ,उस वस्तु की तरह व्यवहार करता है जो ध्वनि के वेग से अधिक के वेग से अपने आस पास के वातावरण से व्यवहार कर रहा हो। यहाँ यह चित्र ऐसे ही एक उड़ते हुए विमान के वायु मण्डल से हो रहे पारस्परिक व्यवहार को दर्शाता हुआ खींचा गया है। एक तरह से यह चित्र और भी विशेष, इस लीए है, क्योंकी इस चित्र में उस क्षण को और भी सटीकता से कैद कीया गया है क्योंकी वेग भरते वायुयान का ध्वनि से अधिक वेग प्राप्त करना एक ऐसे वायुमंडल में हो रहा है जिसमे अत्याधिक आर्द्रता है । पानी की बूंदों से पूर्णतः संघनित ऐसे आकाश में, इस घटना क्रम के कारण , विमान एक सफेद प्रभामंडल को चीरता सा प्रतीत हो रहा है जिसका निर्माण अचानक हो जाता है।]] | ||
====== गति ====== | ====== गति ====== | ||
ध्वनि तरंगें एक माध्यम में एक विशिष्ट गति से चलती हैं, जो माध्यम के गुणों पर निर्भर करती है। कमरे के तापमान पर हवा में, ध्वनि आमतौर पर लगभग 343 मीटर प्रति सेकंड (या लगभग 767 मील प्रति घंटे) की गति से यात्रा करती है। | ध्वनि तरंगें एक माध्यम में एक विशिष्ट गति से चलती हैं, जो माध्यम के गुणों पर निर्भर करती है। कमरे के तापमान पर हवा में, ध्वनि आमतौर पर लगभग 343 मीटर प्रति सेकंड (या लगभग 767 मील प्रति घंटे) की गति से यात्रा करती है। | ||
== ध्वनि तरंगों का अध्ययन == | == ध्वनि तरंगों का अध्ययन == | ||
जीवों, विशेषकर मानव प्रजाति के कान ध्वनि तरंगों का पता लगाने के लिए अभिकल्पित (डिज़ाइन) किए गए हैं। जब ध्वनि तरंगें हमारे कानों तक पहुँचती हैं, तो वे कर्णपटल को कंपन करने का कारण बनती हैं, जो तब हमारे मस्तिष्क में विद्युत संकेतों के रूप में प्रेषित होती हैं। | जीवों, विशेषकर मानव प्रजाति के कान ध्वनि तरंगों का पता लगाने के लिए अभिकल्पित (डिज़ाइन) किए गए हैं। जब ध्वनि तरंगें हमारे कानों तक पहुँचती हैं, तो वे कर्णपटल को कंपन करने का कारण बनती हैं, जो तब हमारे मस्तिष्क में विद्युत संकेतों के रूप में प्रेषित होती हैं। मानव मस्तिष्क इन संकेतों को संसाधित करता है, जिससे उसे देखने और समझने की क्षमता मिलती है । | ||
संचार, संगीत और चिकित्सा इमेजिंग सहित हमारे दैनिक जीवन में ध्वनि के विभिन्न अनुप्रयोग हैं। वैज्ञानिक और इंजीनियर उनके व्यवहार को समझने के लिए ध्वनि तरंगों का अध्ययन करते हैं, माइक्रोफोन और स्पीकर जैसी तकनीकों का विकास करते हैं और अनुनाद और हस्तक्षेप जैसी घटनाओं का पता लगाते हैं। | संचार, संगीत और चिकित्सा इमेजिंग सहित हमारे दैनिक जीवन में ध्वनि के विभिन्न अनुप्रयोग हैं। वैज्ञानिक और इंजीनियर उनके व्यवहार को समझने के लिए ध्वनि तरंगों का अध्ययन करते हैं, माइक्रोफोन और स्पीकर जैसी तकनीकों का विकास करते हैं और अनुनाद और हस्तक्षेप जैसी घटनाओं का पता लगाते हैं। | ||
== | == संक्षेप में == | ||
भौतिकी में ध्वनि कंपन या | भौतिकी में ध्वनि कंपन या विक्षोभ को संदर्भित करती है जो ध्वनि तरंगों के रूप में हवा जैसे माध्यम से फैलती है। ये तरंगें ऊर्जा ले जाती हैं और इन्हें हमारे कानों द्वारा पहचाना जा सकता है, जिससे हम ध्वनि का अनुभव कर सकते हैं। ध्वनि की विशेषता आवृत्ति, आयाम, तरंग दैर्ध्य और गति जैसे गुणों से होती है। | ||
[[Category:ध्वनि]] | [[Category:ध्वनि]] | ||
[[Category:कक्षा-9]] | |||
[[Category:भौतिक विज्ञान]] |
Latest revision as of 21:15, 30 November 2023
ध्वनि, उस कंपन या विक्षोभ को संदर्भित करती है, जो एक माध्यम से यात्रा करता है, साधारणतः हवा, और हमारे कानों द्वारा इसका पता लगाया जा सकता है। ध्वनि ऊर्जा का वह रूप है, जो उस माध्यम में (जिसमे ध्वनि कंपन या विक्षोभ के रूप में विद्यमान होती है) ,भौतिक रूप से अणुओं के संपीड़न और विरलन (फैलने) से उत्पन्न होती है।
जब कोई वस्तु कंपन की अवस्था में है, तो वह आसपास के वायु अणुओं में विक्षोभ पैदा कर सकती है। ये कंपन हवा के अणुओं को एक साथ संपीड़ित करने और फिर अलग-अलग फैलाने का कारण बनते हैं, जिससे उच्च दबाव और निम्न दबाव क्षेत्रों का एक विन्यास (पैटर्न) बनता है। संपीड़न और विरलन का यह प्रतिमान, ध्वनि तरंग के रूप में हवा के माध्यम से फैलता है।
ध्वनि तरंगों की विशेषता
आवृत्ति
यह प्रति सेकंड कंपन या चक्र की संख्या को संदर्भित करता है और इसे हर्ट्ज़ (हर्ट्ज) में मापा जाता है। उच्च आवृत्ति की ध्वनि तरंगों का तारत्व अधिक होता है, जबकि कम आवृत्ति की ध्वनि तरंगों का तारत्व कम होता है। उदाहरण के लिए, एक उच्च तारत्व वाली सीटी उच्च आवृत्ति वाली ध्वनि तरंगें उत्पन्न करती है, जबकि कम तारत्व वाली ड्रम कम आवृत्ति वाली ध्वनि तरंगें उत्पन्न करती है।
आयाम
यह ध्वनि तरंग की शक्ति या तीव्रता को संदर्भित करता है और तरंग द्वारा वहन की जाने वाली ऊर्जा से संबंधित होता है। अधिक आयाम तेज ध्वनि के अनुरूप होता है, जबकि छोटा आयाम नरम ध्वनि के अनुरूप होता है।
तरंग दैर्ध्य
यह एक ध्वनि तरंग में दो लगातार बिंदुओं के बीच की दूरी को संदर्भित करता है जो चरण में हैं (जैसे, दो संपीडन या दो विरलन)। यह ध्वनि तरंग की आवृत्ति से संबंधित है, जिसमें उच्च आवृत्तियाँ कम तरंग दैर्ध्य वाली होती हैं और कम आवृत्तियाँ लंबी तरंग दैर्ध्य वाली होती हैं।
गति
ध्वनि तरंगें एक माध्यम में एक विशिष्ट गति से चलती हैं, जो माध्यम के गुणों पर निर्भर करती है। कमरे के तापमान पर हवा में, ध्वनि आमतौर पर लगभग 343 मीटर प्रति सेकंड (या लगभग 767 मील प्रति घंटे) की गति से यात्रा करती है।
ध्वनि तरंगों का अध्ययन
जीवों, विशेषकर मानव प्रजाति के कान ध्वनि तरंगों का पता लगाने के लिए अभिकल्पित (डिज़ाइन) किए गए हैं। जब ध्वनि तरंगें हमारे कानों तक पहुँचती हैं, तो वे कर्णपटल को कंपन करने का कारण बनती हैं, जो तब हमारे मस्तिष्क में विद्युत संकेतों के रूप में प्रेषित होती हैं। मानव मस्तिष्क इन संकेतों को संसाधित करता है, जिससे उसे देखने और समझने की क्षमता मिलती है ।
संचार, संगीत और चिकित्सा इमेजिंग सहित हमारे दैनिक जीवन में ध्वनि के विभिन्न अनुप्रयोग हैं। वैज्ञानिक और इंजीनियर उनके व्यवहार को समझने के लिए ध्वनि तरंगों का अध्ययन करते हैं, माइक्रोफोन और स्पीकर जैसी तकनीकों का विकास करते हैं और अनुनाद और हस्तक्षेप जैसी घटनाओं का पता लगाते हैं।
संक्षेप में
भौतिकी में ध्वनि कंपन या विक्षोभ को संदर्भित करती है जो ध्वनि तरंगों के रूप में हवा जैसे माध्यम से फैलती है। ये तरंगें ऊर्जा ले जाती हैं और इन्हें हमारे कानों द्वारा पहचाना जा सकता है, जिससे हम ध्वनि का अनुभव कर सकते हैं। ध्वनि की विशेषता आवृत्ति, आयाम, तरंग दैर्ध्य और गति जैसे गुणों से होती है।