गोलीय दर्पणों द्वारा प्रतिबिंबन: Difference between revisions
Listen
(One intermediate revision by one other user not shown) | |||
Line 6: | Line 6: | ||
अवतल दर्पण दो मुख्य प्रकार की छवियां बना सकते हैं: वास्तविक और आभासी। | अवतल दर्पण दो मुख्य प्रकार की छवियां बना सकते हैं: वास्तविक और आभासी। | ||
== | == वास्तविक छवि == | ||
वह छवि है, जिसे स्क्रीन पर प्रक्षेपित किया जा सकता है या जिसको किसी सतह पर प्रग्रहण किया जा सकता है क्योंकि यह प्रकाश की वास्तविक किरणों से बनती है जो एक विशिष्ट बिंदु पर एकत्रित होती हैं। | वह छवि है, जिसे स्क्रीन पर प्रक्षेपित किया जा सकता है या जिसको किसी सतह पर प्रग्रहण किया जा सकता है क्योंकि यह प्रकाश की वास्तविक किरणों से बनती है जो एक विशिष्ट बिंदु पर एकत्रित होती हैं। | ||
Line 35: | Line 35: | ||
====== निर्माण ====== | ====== निर्माण ====== | ||
जब कोई वस्तु फोकस बिंदु (F) और अवतल दर्पण की सतह के बीच रखी जाती है, तो प्रकाश की परावर्तित किरणें दर्पण के पीछे एक बिंदु से हटती हुई प्रतीत होती हैं। ये अपसारी किरणें एक आभासी, सीधी और आवर्धित (बड़ी) छवि बनाती हैं। आभासी छवि दर्पण के उसी तरफ दिखाई देती है जिस तरफ वस्तु दिखाई देती है। | जब कोई वस्तु फोकस बिंदु (<math>F</math>) और अवतल दर्पण की सतह के बीच रखी जाती है, तो प्रकाश की परावर्तित किरणें दर्पण के पीछे एक बिंदु से हटती हुई प्रतीत होती हैं। ये अपसारी किरणें एक आभासी, सीधी और आवर्धित (बड़ी) छवि बनाती हैं। आभासी छवि दर्पण के उसी तरफ दिखाई देती है जिस तरफ वस्तु दिखाई देती है। | ||
====== गणितीय समीकरण ====== | ====== गणितीय समीकरण ====== | ||
इस मामले में, छवि दूरी ( | इस मामले में, छवि दूरी (<math>d </math>) को नकारात्मक माना जाता है क्योंकि छवि वस्तु के समान तरफ बनती है: | ||
<math>\frac{1}{f}=\frac{1}{d_o}+\frac{1}{d_i},</math> | <math>\frac{1}{f}=\frac{1}{d_o}+\frac{1}{d_i},</math> |
Latest revision as of 12:43, 10 September 2024
Image formation by Spherical Mirrors
गोलाकार दर्पण, जो एक गोले के हिस्सों के आकार के घुमावदार दर्पण होते हैं, दर्पण के सापेक्ष वस्तु की स्थिति के आधार पर विभिन्न प्रकार की छवियां बना सकते हैं।
छवियों के प्रकार
अवतल दर्पण दो मुख्य प्रकार की छवियां बना सकते हैं: वास्तविक और आभासी।
वास्तविक छवि
वह छवि है, जिसे स्क्रीन पर प्रक्षेपित किया जा सकता है या जिसको किसी सतह पर प्रग्रहण किया जा सकता है क्योंकि यह प्रकाश की वास्तविक किरणों से बनती है जो एक विशिष्ट बिंदु पर एकत्रित होती हैं।
वास्तविक प्रतिबिम्ब तभी ही बनते हैं जब वस्तु को अवतल दर्पण के फोकस बिंदु () से परे रखा जाता है।
निर्माण
जब किसी वस्तु को अवतल दर्पण के फोकस बिंदु () से परे रखा जाता है, तो वस्तु से प्रकाश की समानांतर किरणें दर्पण से परावर्तित होने के बाद परिवर्तित हो जाती हैं। किरणों का यह अभिसरण एक वास्तविक, उलटा और छोटा (छोटा) चित्र बनाता है। वास्तविक प्रतिबिम्ब वस्तु की तुलना में दर्पण के विपरीत दिशा में बनता है।
गणितीय समीकरण
वास्तविक छवि की स्थिति और आकार की गणना करने के लिए दर्पण समीकरण का उपयोग कीया जाता है:
: दर्पण की फोकल लंबाई (अवतल दर्पण के लिए सकारात्मक)।
: वस्तु की दूरी (दर्पण से वस्तु की दूरी)।
: छवि दूरी (दर्पण से छवि की दूरी)।
आरेख
यहां अवतल दर्पण द्वारा बनी वास्तविक छवि का सरलीकृत चित्र दिया गया है:
आभासी छवि
- आभासी छवि एक ऐसी छवि है जिसे स्क्रीन पर प्रक्षेपित नहीं किया जा सकता क्योंकि यह प्रकाश की किरणों के विचलन (फैलने) के विस्तार से बनती है।
- आभासी छवियाँ हमेशा तब बनती हैं जब वस्तु को फोकस बिंदु () और दर्पण की सतह के बीच रखा जाता है।
निर्माण
जब कोई वस्तु फोकस बिंदु () और अवतल दर्पण की सतह के बीच रखी जाती है, तो प्रकाश की परावर्तित किरणें दर्पण के पीछे एक बिंदु से हटती हुई प्रतीत होती हैं। ये अपसारी किरणें एक आभासी, सीधी और आवर्धित (बड़ी) छवि बनाती हैं। आभासी छवि दर्पण के उसी तरफ दिखाई देती है जिस तरफ वस्तु दिखाई देती है।
गणितीय समीकरण
इस मामले में, छवि दूरी () को नकारात्मक माना जाता है क्योंकि छवि वस्तु के समान तरफ बनती है:
आरेख
यहां अवतल दर्पण द्वारा बनी आभासी छवि का सरलीकृत चित्र दिया गया है:
संक्षेप में
गोलाकार दर्पण, विशेष रूप से अवतल दर्पण, वस्तु की स्थिति के आधार पर वास्तविक और आभासी छवियां बना सकते हैं। इन छवियों की गणना दर्पण समीकरण का उपयोग करके की जा सकती है और यह समझने में महत्वपूर्ण हैं कि दर्पण कैसे काम करते हैं और विभिन्न ऑप्टिकल उपकरणों में उनके अनुप्रयोग कैसे होते हैं।