व्युत्क्रमणीय आव्यूह: Difference between revisions

From Vidyalayawiki

(content added)
(content modified)
 
(6 intermediate revisions by the same user not shown)
Line 2: Line 2:


== परिभाषा ==
== परिभाषा ==
आयाम <math>n \times n</math> के एक आव्यूह <math>A</math> को व्युत्क्रमणीय कहा जाता है, यदि और केवल तभी जब उसी आयाम का एक और आव्यूह <math>B</math> उपस्थित हो, जैसे कि <math>AB=BA=I</math>, जहां <math>I</math> उसी क्रम का पहचान आव्यूह है। आव्यूह <math>B</math> को आव्यूह <math>A</math> के व्युत्क्रम के रूप में जाना जाता है। आव्यूह <math>A</math> का व्युत्क्रम प्रतीकात्मक रूप से <math>A^{-1}</math> द्वारा दर्शाया जाता है। एक व्युत्क्रमणीय आव्यूह को अनव्युत्क्रमणीय(गैर-अव्युत्क्रमणीय) आव्यूह या अनपभ्रष्ट(गैर-डीजनरेटेड)आव्यूह के रूप में भी जाना जाता है।
आयाम <math>n \times n</math> के एक आव्यूह <math>A</math> को व्युत्क्रमणीय कहा जाता है, यदि और केवल तभी जब उसी आयाम का एक और आव्यूह <math>B</math> उपस्थित हो, जैसे कि <math>AB=BA=I</math>, जहां <math>I</math> उसी कोटि का तत्समक आव्यूह है। आव्यूह <math>B</math> को आव्यूह <math>A</math> के व्युत्क्रम के रूप में जाना जाता है। आव्यूह <math>A</math> का व्युत्क्रम प्रतीकात्मक रूप से <math>A^{-1}</math> द्वारा दर्शाया जाता है। एक व्युत्क्रमणीय आव्यूह को अनव्युत्क्रमणीय(गैर-अव्युत्क्रमणीय) आव्यूह या अनपभ्रष्ट(गैर-डीजनरेटेड)आव्यूह के रूप में भी जाना जाता है।


उदाहरण के लिए, आव्यूह <math>A</math> और <math>B</math> नीचे दिए गए हैं:
उदाहरण के लिए, आव्यूह <math>A</math> और <math>B</math> नीचे दिए गए हैं:
Line 38: Line 38:


इससे सिद्ध होता है कि <math>B=C</math> या <math>B</math> और <math>C</math> समान आव्यूह हैं।
इससे सिद्ध होता है कि <math>B=C</math> या <math>B</math> और <math>C</math> समान आव्यूह हैं।
=== प्रमेय 2 ===
यदि <math>A</math> और <math>B</math> एक ही कोटि के आव्यूह हैं और व्युत्क्रमणीय हैं, तो <math>(AB)^{-1}=B^{-1}A^{-1}</math>
=== प्रमाण ===
आव्यूह के व्युत्क्रम की परिभाषा के अनुसार
<math>(AB)(AB)^{-1}=I</math>
<math>A^{-1}(AB)(AB)^{-1}=A^{-1}I</math>  --------- दोनों ओर को  <math>A^{-1}</math>  से गुणा करें
<math>(A^{-1}A)B(AB)^{-1}=A^{-1}</math> --------- हम जानते हैं कि <math>A^{-1}I=A^{-1}</math>    
<math>IB(AB)^{-1}=A^{-1}</math> ---------हम जानते हैं कि <math>A^{-1}A=I</math>  
<math>B(AB)^{-1}=A^{-1}</math>---------हम जानते हैं कि <math>IB=B</math>  
<math>B^{-1}B(AB)^{-1}=B^{-1}A^{-1}</math> --------- दोनों ओर को <math>B^{-1}</math> से गुणा करें
<math>I(AB)^{-1}=B^{-1}A^{-1}</math>---------हम जानते हैं कि <math>B^{-1}B=I</math>  
<math>(AB)^{-1}=B^{-1}A^{-1}</math>---------हम जानते हैं कि <math>I(AB)^{-1}=(AB)^{-1}</math>  
== व्युत्क्रमणीय आव्यूह के अनुप्रयोग ==
* किसी संदेश को एन्क्रिप्ट( कूटबद्ध करने की प्रक्रिया) करने के लिए व्युत्क्रमणीय आव्यूह का उपयोग किया जा सकता है। किसी संदेश को एन्क्रिप्ट करने के कई तरीके हैं और कोडिंग( कूट लेखन) का उपयोग हाल के वर्षों में विशेष रूप से महत्वपूर्ण हो गया है।
* किसी संदेश को डिकोड(कूटानुवाद) करने के लिए क्रिप्टोग्राफ़रों( बीजलेखक) द्वारा व्युत्क्रमणीय आव्यूह का उपयोग किया जाता है, विशेष रूप से विशिष्ट एन्क्रिप्शन एल्गोरिथ्म( कूट लेखन कलन विधि)की प्रोग्रामिंग (प्रोग्रामन)करने वालों द्वारा।
* आप स्क्रीन(प्रदर्शित  चित्रपट) पर जो देखते हैं उसे प्रस्तुत करने के लिए 3D स्पेस में कंप्यूटर ग्राफ़िक्स व्युत्क्रमणीय आव्यूह का उपयोग करते हैं।
[[Category:आव्यूह]][[Category:गणित]][[Category:कक्षा-12]]
[[Category:आव्यूह]][[Category:गणित]][[Category:कक्षा-12]]

Latest revision as of 13:41, 12 January 2024

रैखिक बीजगणित में, एक वर्ग आव्यूह को व्युत्क्रमणीय कहा जाता है, यदि आव्यूह और उसके व्युत्क्रम का गुणनफल तत्समक आव्यूह है।

परिभाषा

आयाम के एक आव्यूह को व्युत्क्रमणीय कहा जाता है, यदि और केवल तभी जब उसी आयाम का एक और आव्यूह उपस्थित हो, जैसे कि , जहां उसी कोटि का तत्समक आव्यूह है। आव्यूह को आव्यूह के व्युत्क्रम के रूप में जाना जाता है। आव्यूह का व्युत्क्रम प्रतीकात्मक रूप से द्वारा दर्शाया जाता है। एक व्युत्क्रमणीय आव्यूह को अनव्युत्क्रमणीय(गैर-अव्युत्क्रमणीय) आव्यूह या अनपभ्रष्ट(गैर-डीजनरेटेड)आव्यूह के रूप में भी जाना जाता है।

उदाहरण के लिए, आव्यूह और नीचे दिए गए हैं:

अब हम के साथ को गुणा करते हैं और एक तत्समक आव्यूह प्राप्त करते हैं:

इसी प्रकार, को से गुणा करने पर, हमें समान तत्समक आव्यूह प्राप्त होता है:

हम देख सकते हैं कि

अत: और को के व्युत्क्रम के रूप में जाना जाता है

और को का व्युत्क्रम भी कहा जा सकता है

व्युत्क्रमणीय आव्यूह प्रमेय

प्रमेय 1

यदि किसी वर्ग आव्यूह का व्युत्क्रम उपस्थित है, तो वह सदैव अद्वितीय होता है।

प्रमाण:

मान लीजिए , कोटि का एक वर्ग आव्यूह है। मान लीजिए आव्यूह और , आव्यूह के व्युत्क्रम हैं।

अब चूँकि आव्यूह का व्युत्क्रम है।

इसी प्रकार,

परंतु

इससे सिद्ध होता है कि या और समान आव्यूह हैं।

प्रमेय 2

यदि और एक ही कोटि के आव्यूह हैं और व्युत्क्रमणीय हैं, तो

प्रमाण

आव्यूह के व्युत्क्रम की परिभाषा के अनुसार

--------- दोनों ओर को से गुणा करें

--------- हम जानते हैं कि    

---------हम जानते हैं कि  

---------हम जानते हैं कि  

--------- दोनों ओर को से गुणा करें

---------हम जानते हैं कि  

---------हम जानते हैं कि  

व्युत्क्रमणीय आव्यूह के अनुप्रयोग

  • किसी संदेश को एन्क्रिप्ट( कूटबद्ध करने की प्रक्रिया) करने के लिए व्युत्क्रमणीय आव्यूह का उपयोग किया जा सकता है। किसी संदेश को एन्क्रिप्ट करने के कई तरीके हैं और कोडिंग( कूट लेखन) का उपयोग हाल के वर्षों में विशेष रूप से महत्वपूर्ण हो गया है।
  • किसी संदेश को डिकोड(कूटानुवाद) करने के लिए क्रिप्टोग्राफ़रों( बीजलेखक) द्वारा व्युत्क्रमणीय आव्यूह का उपयोग किया जाता है, विशेष रूप से विशिष्ट एन्क्रिप्शन एल्गोरिथ्म( कूट लेखन कलन विधि)की प्रोग्रामिंग (प्रोग्रामन)करने वालों द्वारा।
  • आप स्क्रीन(प्रदर्शित चित्रपट) पर जो देखते हैं उसे प्रस्तुत करने के लिए 3D स्पेस में कंप्यूटर ग्राफ़िक्स व्युत्क्रमणीय आव्यूह का उपयोग करते हैं।