प्रक्षेप्य गति: Difference between revisions

From Vidyalayawiki

Listen

 
(11 intermediate revisions by the same user not shown)
Line 13: Line 13:


====== वेग ======
====== वेग ======
यदि यह मान लीय जाए की प्रक्षेप्य को प्रारंभिक वेग <math>v ( 0 ) \equiv v_0</math> के साथ प्रक्षेपित किया गया है, जिसे क्षैतिज और के योग के रूप में व्यक्त किया जा सकता है।


===== यदि यह मान लीय जाए की प्रक्षेप्य को प्रारंभिक वेग <math>v ( 0 ) \equiv v_0</math> के साथ प्रक्षेपित किया गया है, जिसे क्षैतिज और के योग के रूप में व्यक्त किया जा सकता है। =====
<math>\mathbf{v}_0 = v_{0x}\mathbf{\hat x} + v_{0y}\mathbf{\hat y} </math>
<math>\mathbf{v}_0 = v_{0x}\mathbf{\hat x} + v_{0y}\mathbf{\hat y} </math>


===== ऊर्ध्वाधर घटक इस प्रकार हैं: =====
ऊर्ध्वाधर घटक इस प्रकार हैं:
यदि प्रारंभिक लॉन्च कोण, <math>\theta </math>, ज्ञात हो तो (घटक) <math>v_ {0x}</math> और <math>v_ {0y}</math> नीचे दीये गए समीकरणों का उपयोग कर निकाला जा सकता है :
[[File:Ferde hajitas3.svg|thumb|तिरछे प्रक्षेपण पर विस्थापन और समन्वय]]
यदि प्रारंभिक प्रक्षेप्य (लॉन्च) कोण, <math>\theta </math>, ज्ञात हो तो (घटक) <math>v_ {0x}</math> और <math>v_ {0y}</math> नीचे दीये गए समीकरणों का उपयोग कर निकाला जा सकता है :


<math>{\displaystyle v_{0x}=v_{0}\cos(\theta )},</math>
<math>{\displaystyle v_{0x}=v_{0}\cos(\theta )},</math>
Line 24: Line 25:
<math>{v_ {0y} = v_ {0} \sin (\theta )},</math>
<math>{v_ {0y} = v_ {0} \sin (\theta )},</math>


वस्तु के वेग का क्षैतिज घटक गतिमाँ अवस्था की पूर्णअवधि में अपरिवर्तित रहता है। वेग का ऊर्ध्वाधर घटक रैखिक रूप से बदलता है, [नोट 2] क्योंकि गुरुत्वाकर्षण के कारण त्वरण स्थिर होता है। किसी भी समय t पर वेग के घटकों को हल करने के लिए x और y दिशाओं में त्वरण को निम्नानुसार एकीकृत किया जा सकता है:
वस्तु के वेग का क्षैतिज घटक गतिमान अवस्था की अवधि तक अपरिवर्तित रहता है। वेग का ऊर्ध्वाधर घटक रैखिक रूप से बदलता है, क्योंकि गुरुत्वाकर्षण के कारण त्वरण स्थिर होता है। किसी भी समय <math>t </math> पर वेग के घटकों को हल करने के लिए <math>x </math>और <math>y </math> दिशाओं में त्वरण को निम्नानुसार एकीकृत किया जा सकता है:


=====    v x = v 0 cos ⁡ ( θ ) {डिस्प्लेस्टाइल v_ {x}=v_{0}cos(theta )}, =====
<math>{\displaystyle v_ {x}=v_{0}cos(\theta )},</math>


=====    v y = v 0 पाप ⁡ ( θ ) − g t {\displaystyle v_{y}=v_{0}\sin(\theta )-gt}. =====
<math>{\displaystyle v_{y}=v_{0}\sin(\theta )-gt},</math>


===== वेग का परिमाण (पाइथागोरस प्रमेय के तहत, जिसे त्रिभुज नियम के रूप में भी जाना जाता है): =====
वेग का परिमाण (पाइथागोरस प्रमेय के अनुसार , जिसे त्रिभुज नियम के रूप में भी जाना जाता है):


=====    v = v =====
   <math> v = \sqrt{v_x^2 + v_y^2 } </math>


===== विस्थापन =====
===== विस्थापन =====
किसी भी समय <math>t</math> , प्रक्षेप्य का क्षैतिज और ऊर्ध्वाधर विस्थापन है:


===== परवलयिक फेंकने का विस्थापन और निर्देशांक =====
<math>{\displaystyle x=v_{0}t\cos(\theta )},</math>


===== किसी भी समय टी {डिस्प्लेस्टाइल टी}, प्रक्षेप्य का क्षैतिज और ऊर्ध्वाधर विस्थापन है: =====
<math>{\displaystyle y=v_{0}t\sin(\theta )-{\frac {1}{2}}gt^{2}}</math>


=====    x = v 0 t cos ⁡ ( θ ) {\displaystyle x=v_{0}t\cos(\theta )}, =====
विस्थापन का परिमाण है:


=====    य = वी 0 =====
 <math>\Delta r=\sqrt{x^2 + y^2 },</math>
 
निम्न लिखित समीकरणों पर विचार करें,
 
<math>{\displaystyle x=v_{0}t\cos(\theta ),y=v_{0}t \sin(\theta )-{\frac {1}{2}}gt^{2}}</math>
 
यदि इन दोनों समीकरणों के बीच <math>t</math> को हटा दिया जाए तो निम्नलिखित समीकरण प्राप्त होता है:
 
<math>y = \tan(\theta) \cdot x-\frac{g}{2v^2_{0}\cos^2 \theta} \cdot x^2=\tan\theta \cdot x \left(1-\frac{x}{R}\right)</math>
 
यहाँ <math>R</math> एक प्रक्षेप्य की सीमा है।
 
चूँकि <math>g,\theta, </math> और <math>v_0</math> स्थिरांक हैं, उपरोक्त समीकरण
 
<math>y=ax+bx^2</math>
 
प्रकार का है।
 
जिसमें <math>a</math> और <math>b</math> स्थिरांक हैं। यह एक परवलय का समीकरण है, इसलिए पथ परवलयिक है। परवलय की धुरी ऊर्ध्वाधर है.
 
यदि प्रक्षेप्य की स्थिति <math>(x,y)</math>और प्रक्षेपण कोण <math>(\theta</math> या <math>\alpha</math>) ज्ञात है, तो प्रारंभिक वेग को उपरोक्त परवलयिक समीकरण में <math>v_0</math> के लिए हल किया जा सकता है:
 
<math>v_0 = \sqrt{{x^2 g} \over {x \sin 2\theta - 2y \cos^2\theta}}</math>,
===== परवलयिक प्रक्षेप्य का विस्थापन और निर्देशांक =====
किसी भी समय <math>t </math>, प्रक्षेप्य का क्षैतिज और ऊर्ध्वाधर विस्थापन है:
 
<math>{\displaystyle x=v_{0}t\cos(\theta )},</math>


===== क्षैतिज गति =====
===== क्षैतिज गति =====
प्रक्षेप्य के वेग का क्षैतिज घटक अपने पूरे प्रक्षेपवक्र में स्थिर रहता है। इसका तात्पर्य यह है कि वस्तु क्षैतिज दिशा में एक समान वेग से चलती है।
प्रक्षेप्य के वेग का क्षैतिज घटक अपने पूरे प्रक्षेपवक्र में स्थिर रहता है। इसका तात्पर्य यह है कि वस्तु क्षैतिज दिशा में एक समान वेग से चलती है।


=====    लंबवत गति =====
===== लंबवत गति =====
प्रक्षेप्य वेग का लंबवत घटक गुरुत्वाकर्षण से प्रभावित होता है। वस्तु गुरुत्वाकर्षण के विरुद्ध ऊपर की ओर तब तक चलती है जब तक वह अपने उच्चतम बिंदु तक नहीं पहुँच जाती है, और फिर गुरुत्वाकर्षण बल के कारण नीचे गिर जाती है।
प्रक्षेप्य वेग का लंबवत घटक गुरुत्वाकर्षण से प्रभावित होता है। वस्तु गुरुत्वाकर्षण के विरुद्ध ऊपर की ओर तब तक चलती है जब तक वह अपने उच्चतम बिंदु तक नहीं पहुँच जाती है, और फिर गुरुत्वाकर्षण बल के कारण नीचे गिर जाती है।


=====    परवलयिक प्रक्षेपवक्र =====
=====  परवलयिक प्रक्षेपवक्र =====
एक प्रक्षेप्य द्वारा पीछा किया जाने वाला मार्ग एक सममित घुमावदार पथ है जिसे परवलय के रूप में जाना जाता है। प्रक्षेपवक्र का आकार प्रारंभिक वेग और प्रक्षेप्य के प्रक्षेपण कोण द्वारा निर्धारित किया जाता है।
एक प्रक्षेप्य द्वारा पीछा किया जाने वाला मार्ग एक सममित घुमावदार पथ है जिसे परवलय के रूप में जाना जाता है। प्रक्षेपवक्र का आकार प्रारंभिक वेग और प्रक्षेप्य के प्रक्षेपण कोण द्वारा निर्धारित किया जाता है।


=====    उड़ान का समय =====
=====  उड़ान का समय =====
किसी प्रक्षेप्य को प्रक्षेपित करने (लॉन्च) से लेकर अवतरण (लैंडिंग) तक अपनी गति पूरी करने में लगने वाले कुल समय को उड़ान का समय कहा जाता है। यह प्रारंभिक वेग और प्रक्षेप्य के प्रक्षेपण कोण पर निर्भर करता है।
किसी प्रक्षेप्य को प्रक्षेपित करने (लॉन्च) से लेकर अवतरण (लैंडिंग) तक अपनी गति पूरी करने में लगने वाले कुल समय को उड़ान का समय कहा जाता है। यह प्रारंभिक वेग और प्रक्षेप्य के प्रक्षेपण कोण पर निर्भर करता है।


=====    अधिकतम ऊँचाई =====
=====  अधिकतम ऊँचाई =====
जब इसका ऊर्ध्वाधर वेग घटक शून्य हो जाता है तो प्रक्षेप्य अपनी अधिकतम ऊँचाई तक पहुँच जाता है। प्रक्षेपण उपरांत अर्जित की गई ऊंचाई प्रारंभिक वेग और प्रक्षेपण कोण पर निर्भर करती है।
जब इसका ऊर्ध्वाधर वेग घटक शून्य हो जाता है तो प्रक्षेप्य अपनी अधिकतम ऊँचाई तक पहुँच जाता है। प्रक्षेपण उपरांत अर्जित की गई ऊंचाई प्रारंभिक वेग और प्रक्षेपण कोण पर निर्भर करती है।



Latest revision as of 13:27, 2 February 2024

Projectile motion

प्रक्षेप्य गति एक वस्तु की गति को संदर्भित करती है जो हवा में प्रक्षेपित होती है और अकेले गुरुत्वाकर्षण के प्रभाव में चलती है, यह मानते हुए कि कोई अन्य बल उस पर कार्य नहीं कर रहा है (वायु प्रतिरोध की उपेक्षा)। प्रक्षेप्य गति के सामान्य उदाहरणों में हवा में फेंकी गई गेंद या तोप से प्रक्षेपित एक प्रक्षेप्य शामिल है।

प्रक्षेप्य गति की प्रमुख विशेषताओं

  त्वरण

चूँकि प्रक्षेप्य गतिकी के अध्यनन में केवल ऊर्ध्वाधर दिशा में त्वरण होता है, क्षैतिज दिशा में वेग स्थिर माना जाता है, जो के बराबर होता है। प्रक्षेप्य की ऊर्ध्वाधर गति एक कण की उसके मुक्त रूप से गिरने की गति है। यहां त्वरण स्थिर है, जो के बराबर है। त्वरण के घटक हैं:

वेग

यदि यह मान लीय जाए की प्रक्षेप्य को प्रारंभिक वेग के साथ प्रक्षेपित किया गया है, जिसे क्षैतिज और के योग के रूप में व्यक्त किया जा सकता है।

ऊर्ध्वाधर घटक इस प्रकार हैं:

तिरछे प्रक्षेपण पर विस्थापन और समन्वय

यदि प्रारंभिक प्रक्षेप्य (लॉन्च) कोण, , ज्ञात हो तो (घटक) और नीचे दीये गए समीकरणों का उपयोग कर निकाला जा सकता है :

वस्तु के वेग का क्षैतिज घटक गतिमान अवस्था की अवधि तक अपरिवर्तित रहता है। वेग का ऊर्ध्वाधर घटक रैखिक रूप से बदलता है, क्योंकि गुरुत्वाकर्षण के कारण त्वरण स्थिर होता है। किसी भी समय पर वेग के घटकों को हल करने के लिए और दिशाओं में त्वरण को निम्नानुसार एकीकृत किया जा सकता है:

वेग का परिमाण (पाइथागोरस प्रमेय के अनुसार , जिसे त्रिभुज नियम के रूप में भी जाना जाता है):

  

विस्थापन

किसी भी समय , प्रक्षेप्य का क्षैतिज और ऊर्ध्वाधर विस्थापन है:

विस्थापन का परिमाण है:

 

निम्न लिखित समीकरणों पर विचार करें,

यदि इन दोनों समीकरणों के बीच को हटा दिया जाए तो निम्नलिखित समीकरण प्राप्त होता है:

यहाँ एक प्रक्षेप्य की सीमा है।

चूँकि और स्थिरांक हैं, उपरोक्त समीकरण

प्रकार का है।

जिसमें और स्थिरांक हैं। यह एक परवलय का समीकरण है, इसलिए पथ परवलयिक है। परवलय की धुरी ऊर्ध्वाधर है.

यदि प्रक्षेप्य की स्थिति और प्रक्षेपण कोण या ) ज्ञात है, तो प्रारंभिक वेग को उपरोक्त परवलयिक समीकरण में के लिए हल किया जा सकता है:

,

परवलयिक प्रक्षेप्य का विस्थापन और निर्देशांक

किसी भी समय , प्रक्षेप्य का क्षैतिज और ऊर्ध्वाधर विस्थापन है:

क्षैतिज गति

प्रक्षेप्य के वेग का क्षैतिज घटक अपने पूरे प्रक्षेपवक्र में स्थिर रहता है। इसका तात्पर्य यह है कि वस्तु क्षैतिज दिशा में एक समान वेग से चलती है।

लंबवत गति

प्रक्षेप्य वेग का लंबवत घटक गुरुत्वाकर्षण से प्रभावित होता है। वस्तु गुरुत्वाकर्षण के विरुद्ध ऊपर की ओर तब तक चलती है जब तक वह अपने उच्चतम बिंदु तक नहीं पहुँच जाती है, और फिर गुरुत्वाकर्षण बल के कारण नीचे गिर जाती है।

 परवलयिक प्रक्षेपवक्र

एक प्रक्षेप्य द्वारा पीछा किया जाने वाला मार्ग एक सममित घुमावदार पथ है जिसे परवलय के रूप में जाना जाता है। प्रक्षेपवक्र का आकार प्रारंभिक वेग और प्रक्षेप्य के प्रक्षेपण कोण द्वारा निर्धारित किया जाता है।

 उड़ान का समय

किसी प्रक्षेप्य को प्रक्षेपित करने (लॉन्च) से लेकर अवतरण (लैंडिंग) तक अपनी गति पूरी करने में लगने वाले कुल समय को उड़ान का समय कहा जाता है। यह प्रारंभिक वेग और प्रक्षेप्य के प्रक्षेपण कोण पर निर्भर करता है।

 अधिकतम ऊँचाई

जब इसका ऊर्ध्वाधर वेग घटक शून्य हो जाता है तो प्रक्षेप्य अपनी अधिकतम ऊँचाई तक पहुँच जाता है। प्रक्षेपण उपरांत अर्जित की गई ऊंचाई प्रारंभिक वेग और प्रक्षेपण कोण पर निर्भर करती है।

प्रक्षेप्य गति का विश्लेषण

क्षैतिज और ऊर्ध्वाधर गतियों का स्वतंत्र रूप से विश्लेषण किया जा सकता है। क्षैतिज गति एक समान होती है, जबकि ऊर्ध्वाधर गति गुरुत्वाकर्षण से प्रभावित होती है, जिसके परिणामस्वरूप समान रूप से त्वरित गति होती है।

गणितीय रूप से

प्रक्षेप्य गति का विश्लेषण करने के लिए गति के क्षैतिज और ऊर्ध्वाधर घटकों का वर्णन करने के लिए गति के समीकरणों का उपयोग किया जा सकता है। इन समीकरणों को हल करके और गतिकी (कीनेमेटीक्स) के सिद्धांतों को लागू करके सीमा, अधिकतम ऊंचाई, उड़ान का समय और अन्य गुण निर्धारित किए जा सकते हैं।

संक्षेप में

यह ध्यान रखना महत्वपूर्ण है कि वास्तविक जगत के परिदृश्यों में, वायु प्रतिरोध और गुरुत्वाकर्षण त्वरण में परिवर्तन जैसे कारक प्रक्षेप्य के प्रक्षेपवक्र को प्रभावित कर सकते हैं, इसे आदर्श परवलयिक पथ से विचलित कर सकते हैं।