समतल में गति: Difference between revisions
Listen
(→ त्वरण) |
|||
(2 intermediate revisions by the same user not shown) | |||
Line 18: | Line 18: | ||
== त्वरण == | == त्वरण == | ||
त्वरण समय के संबंध में वेग परिवर्तन की दर है। यह एक सादिश मात्रा है, जो यह दर्शाती है कि किसी वस्तु का वेग कैसे बदल रहा है। जहां सकारात्मक त्वरण, वेग में वृद्धि का संकेत दर्शाता है, वहीं नकारात्मक त्वरण (या मंदी) वेग में कमी दर्शाता है। औसत त्वरण की गणना वेग में परिवर्तन को लिए गए,समय से विभाजित करके की जाती है। तात्कालिक त्वरण समय में किसी विशेष क्षण में त्वरण है। | त्वरण समय के संबंध में वेग परिवर्तन की दर है। यह एक सादिश मात्रा है, जो यह दर्शाती है कि किसी वस्तु का वेग कैसे बदल रहा है। जहां सकारात्मक त्वरण, वेग में वृद्धि का संकेत दर्शाता है, वहीं नकारात्मक त्वरण (या मंदी) वेग में कमी दर्शाता है। औसत त्वरण की गणना वेग में परिवर्तन को लिए गए,समय से विभाजित करके की जाती है। तात्कालिक त्वरण समय में किसी विशेष क्षण में त्वरण है। | ||
[[File:Circular motion velocity and acceleration2.svg|thumb|एक वक्रीय समतल में गति का आरेख ]] | |||
[[File:Chartres, Hôtel Montescot 08 rampe PMR.jpg|left|thumb|आनत समतल भी समतल में गति का उदाहरण है ]] | |||
एक समतल में गति की अवधि में वस्तुएँ सीधी रेखाओं, वक्रों या जटिल पथों पर चल सकती हैं।गति का विश्लेषण और वर्णन करने के लिए, प्रायः त्रिकोणमिति (ट्रिगनोमेटेरी)और कलन (कैलकुलस) की अवधारणाओं का उपयोग किया जाता है, जैसे कि सादिश (वैक्टर), समन्वय प्रणाली और अवकलन/एकीकरण का उपयोग करना। | एक समतल में गति की अवधि में वस्तुएँ सीधी रेखाओं, वक्रों या जटिल पथों पर चल सकती हैं।गति का विश्लेषण और वर्णन करने के लिए, प्रायः त्रिकोणमिति (ट्रिगनोमेटेरी)और कलन (कैलकुलस) की अवधारणाओं का उपयोग किया जाता है, जैसे कि सादिश (वैक्टर), समन्वय प्रणाली और अवकलन/एकीकरण का उपयोग करना। | ||
== संक्षेप में == | == संक्षेप में == | ||
समतल में गति की समझ , भौतिकी, इंजीनियरिंग और खेल सहित विभिन्न क्षेत्रों में महत्वपूर्ण है, क्योंकि यह चलित वस्तुओं का दो आयामों में व्यवहार को प्रतिरूपित (मॉडल बनाना) और भविष्यवाणी करने में सुविधा करता है। | समतल में गति की समझ , भौतिकी, इंजीनियरिंग और खेल सहित विभिन्न क्षेत्रों में महत्वपूर्ण है, क्योंकि यह चलित वस्तुओं का दो आयामों में व्यवहार को प्रतिरूपित (मॉडल बनाना) और भविष्यवाणी करने में सुविधा करता है। | ||
[[Category:समतल में गति]][[Category:भौतिक विज्ञान]][[Category:कक्षा-11]] | [[Category:समतल में गति]][[Category:भौतिक विज्ञान]][[Category:कक्षा-11]] |
Latest revision as of 22:21, 6 February 2024
Motion in a Plane
एक समतल में गति दो आयामों में एक वस्तु की गति को संदर्भित करती है, प्रायः एक समन्वय प्रणाली के और अक्षों के साथ। इस प्रकार की गति तब होती है, जब कोई वस्तु क्षैतिज, लंबवत या दोनों दिशाओं के संयोजन में चलती है।
किसी तल में गति का वर्णन करते समय, स्थिति, विस्थापन, वेग और त्वरण जैसी अवधारणाओं का उपयोग कीया जाता है।
यहाँ पहलुओं को वर्णित कीया जा रहा है :
स्थिति
किसी तल में किसी वस्तु की स्थिति किसी संदर्भ बिंदु या उत्पत्ति के सापेक्ष उसकी स्थिति होती है। प्रायः ,यह एक स्थिति सादिश () द्वारा दर्शाया जाता है, जहां '' क्षैतिज दूरी का प्रतिनिधित्व करता है और '' मूल बिंदु से लंबवत दूरी का प्रतिनिधित्व करता है।
विस्थापन
विस्थापन किसी वस्तु की प्रारंभिक स्थिति से उसकी अंतिम स्थिति में परिवर्तन को संदर्भित करता है। यह एक सदिश राशि है और इसकी गणना प्रारंभिक स्थिति सदिश को अंतिम स्थिति सदिश से घटाकर की जा सकती है। विस्थापन सदिश स्थिति में परिवर्तन का परिमाण (दूरी) और दिशा दोनों देता है।
वेग
वेग समय के संबंध में विस्थापन के परिवर्तन की दर है। यह एक सदिश राशि है,जो गति और दिशा दोनों का प्रतिनिधित्व करती है। औसत वेग की गणना विस्थापन में लगने वाले समय से भाग देकर की जाती है। तात्क्षणिक वेग, समय में एक विशेष क्षण में वेग है।
त्वरण
त्वरण समय के संबंध में वेग परिवर्तन की दर है। यह एक सादिश मात्रा है, जो यह दर्शाती है कि किसी वस्तु का वेग कैसे बदल रहा है। जहां सकारात्मक त्वरण, वेग में वृद्धि का संकेत दर्शाता है, वहीं नकारात्मक त्वरण (या मंदी) वेग में कमी दर्शाता है। औसत त्वरण की गणना वेग में परिवर्तन को लिए गए,समय से विभाजित करके की जाती है। तात्कालिक त्वरण समय में किसी विशेष क्षण में त्वरण है।
एक समतल में गति की अवधि में वस्तुएँ सीधी रेखाओं, वक्रों या जटिल पथों पर चल सकती हैं।गति का विश्लेषण और वर्णन करने के लिए, प्रायः त्रिकोणमिति (ट्रिगनोमेटेरी)और कलन (कैलकुलस) की अवधारणाओं का उपयोग किया जाता है, जैसे कि सादिश (वैक्टर), समन्वय प्रणाली और अवकलन/एकीकरण का उपयोग करना।
संक्षेप में
समतल में गति की समझ , भौतिकी, इंजीनियरिंग और खेल सहित विभिन्न क्षेत्रों में महत्वपूर्ण है, क्योंकि यह चलित वस्तुओं का दो आयामों में व्यवहार को प्रतिरूपित (मॉडल बनाना) और भविष्यवाणी करने में सुविधा करता है।