उत्तल दर्पण: Difference between revisions

From Vidyalayawiki

Listen

No edit summary
No edit summary
 
(One intermediate revision by one other user not shown)
Line 5: Line 5:
== महत्वपूर्ण नामावली : ==
== महत्वपूर्ण नामावली : ==


=====    वक्रता केंद्र (c): =====
== वक्रता केंद्र (c): ==
[[File:Convexmirror raydiagram.svg|thumb|उत्तल दर्पण का प्रतिनिधित्व करने वाला एक आरेख, जो इसका फोकस, फोकल लंबाई, वक्रता केंद्र और मुख्य अक्ष दिखाता है। यह दर्शक को यह देखने में सक्षम बनाता है कि दर्पण कैसा दिखता है और कैसे कार्य करता है। यह दर्शाता है कि दर्पण कहाँ प्रतिबिंबित करता है ।]]
[[File:Convexmirror raydiagram.svg|thumb|उत्तल दर्पण का प्रतिनिधित्व करने वाला एक आरेख, जो इसका फोकस, फोकल लंबाई, वक्रता केंद्र और मुख्य अक्ष दिखाता है। यह दर्शक को यह देखने में सक्षम बनाता है कि दर्पण कैसा दिखता है और कैसे कार्य करता है। यह दर्शाता है कि दर्पण कहाँ प्रतिबिंबित करता है ।]]
एक ऐसा वृहद वृत्त ,जो दर्पण के वक्र पर बिल्कुल सटीक बैठता हो तो  इस वृत्त के केंद्र को वक्रता केंद्र कहा जाता है।
एक ऐसा वृहद वृत्त ,जो दर्पण के वक्र पर बिल्कुल सटीक बैठता हो तो  इस वृत्त के केंद्र को वक्रता केंद्र कहा जाता है।


=====    शीर्ष (V): =====
===== शीर्ष (V): =====
दर्पण की घुमावदार सतह का मध्यबिंदु।
दर्पण की घुमावदार सतह का मध्यबिंदु।


=====    फोकस (f): =====
===== फोकस (f): =====
अवतल दर्पण में एक विशेष बिंदु होता है जिसे फोकस कहा जाता है जहां समानांतर प्रकाश किरणें दर्पण से परावर्तित होने के बाद एकत्रित होती हैं।
अवतल दर्पण में एक विशेष बिंदु होता है जिसे फोकस कहा जाता है जहां समानांतर प्रकाश किरणें दर्पण से परावर्तित होने के बाद एकत्रित होती हैं।


Line 36: Line 36:
<math>m=\frac {h_i}{h_o}=-\frac{v}{u},</math>
<math>m=\frac {h_i}{h_o}=-\frac{v}{u},</math>


*    m आवर्धन है.
*    <math>m</math> आवर्धन है.
*    hi छवि की ऊंचाई है.
*    <math>h_i</math>छवि की ऊंचाई है.
*    ho​ वस्तु की ऊंचाई है।
*    <math>h_o</math> वस्तु की ऊंचाई है।


ऋणात्मक चिन्ह का अर्थ है कि वस्तु की तुलना में प्रतिबिम्ब उल्टा है।
ऋणात्मक चिन्ह का अर्थ है कि वस्तु की तुलना में प्रतिबिम्ब उल्टा है।
Line 44: Line 44:
छवि निर्माण:
छवि निर्माण:


*    यदि वस्तु दूर है (u बड़ा है), तो छवि फोकस के करीब बनती है ( v छोटा है), और यह उलटा और वास्तविक है।
*    यदि वस्तु दूर है (<math>u</math> बड़ा है), तो छवि फोकस के समीप बनती है ( <math>v </math>छोटा है), और यह उलटा और वास्तविक है।
*    यदि वस्तु को फोकल लंबाई (u=2f) से दोगुनी दूरी पर रखा जाता है, तो छवि फोकस पर बनती है और उलटी और वास्तविक   होती है।
*    यदि वस्तु को फोकल लंबाई <math>(u=2f)</math>से दोगुनी दूरी पर रखा जाता है, तो छवि फोकस पर बनती है और उलटी और वास्तविक होती है।
*    यदि वस्तु फोकस और दर्पण (f<u<2f) के बीच है, तो छवि आभासी (दर्पण के पीछे) और सीधी होती है।
*    यदि वस्तु फोकस और दर्पण <math>(f<u<2f)</math>के बीच है, तो छवि आभासी (दर्पण के पीछे) और सीधी होती है।


== सब एक साथ ==
== सब एक साथ ==

Latest revision as of 12:11, 23 September 2024

Convex Mirror

एक उत्तल दर्पण कटोरे के अंदर की तरह, अंदर की ओर मुड़ता है। प्रकाश को प्रतिबिंबित करने में इन दर्पणों में कुछ आकर्षक गुण होते हैं।

महत्वपूर्ण नामावली :

वक्रता केंद्र (c):

उत्तल दर्पण का प्रतिनिधित्व करने वाला एक आरेख, जो इसका फोकस, फोकल लंबाई, वक्रता केंद्र और मुख्य अक्ष दिखाता है। यह दर्शक को यह देखने में सक्षम बनाता है कि दर्पण कैसा दिखता है और कैसे कार्य करता है। यह दर्शाता है कि दर्पण कहाँ प्रतिबिंबित करता है ।

एक ऐसा वृहद वृत्त ,जो दर्पण के वक्र पर बिल्कुल सटीक बैठता हो तो इस वृत्त के केंद्र को वक्रता केंद्र कहा जाता है।

शीर्ष (V):

दर्पण की घुमावदार सतह का मध्यबिंदु।

फोकस (f):

अवतल दर्पण में एक विशेष बिंदु होता है जिसे फोकस कहा जाता है जहां समानांतर प्रकाश किरणें दर्पण से परावर्तित होने के बाद एकत्रित होती हैं।

गणितीय समीकरण

दो समीकरण यह समझने में सुविधा करेंगे कि अवतल दर्पण कैसे कार्य करते हैं: दर्पण समीकरण और आवर्धन समीकरण।

   दर्पण समीकरण

   अवतल दर्पणों के लिए दर्पण समीकरण इस प्रकार है:

दर्पण की फोकल लंबाई है (यह मापता है कि दर्पण कितनी तीव्रता से प्रकाश को मोड़ता है)।

   वह दूरी है जहां छवि बनती है (वास्तविक छवियों के लिए सकारात्मक, आभासी छवियों के लिए नकारात्मक)।

  दर्पण से वस्तु की दूरी है (यदि वस्तु दर्पण के सामने है तो सकारात्मक, यदि पीछे है तो नकारात्मक)।

अवतल दर्पणों के लिए फोकल लंबाई (f) को सकारात्मक माना जाता है।

आवर्धन समीकरण:

आवर्धन समीकरण इस प्रकार दिखता है:

  •    आवर्धन है.
  •    छवि की ऊंचाई है.
  •    वस्तु की ऊंचाई है।

ऋणात्मक चिन्ह का अर्थ है कि वस्तु की तुलना में प्रतिबिम्ब उल्टा है।

छवि निर्माण:

  •    यदि वस्तु दूर है ( बड़ा है), तो छवि फोकस के समीप बनती है ( छोटा है), और यह उलटा और वास्तविक है।
  •    यदि वस्तु को फोकल लंबाई से दोगुनी दूरी पर रखा जाता है, तो छवि फोकस पर बनती है और उलटी और वास्तविक होती है।
  •    यदि वस्तु फोकस और दर्पण के बीच है, तो छवि आभासी (दर्पण के पीछे) और सीधी होती है।

सब एक साथ

अवतल दर्पण का उपयोग विभिन्न ऑप्टिकल उपकरणों जैसे दूरबीन और मेकअप दर्पण में किया जाता है। दर्पण समीकरण और आवर्धन सूत्र का उपयोग करके, यह अनुमान लगाया जा सकता है कि छवियाँ कहाँ बनेगी और वे अवतल दर्पणों में कैसे दिखाई देंगी ।

संक्षेप में

ये समीकरण अवतल दर्पणों के साथ प्रकाश के व्यवहार को समझने में सुविधा करने वाले उपकरणों की तरह हैं।