द्विघातीय समीकरण: Difference between revisions
(content added) |
(added internal links) |
||
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
द्विघातीय समीकरण को द्वितीय घात के [[बहुपद]] समीकरण के रूप में परिभाषित किया जा सकता है, जिसका अर्थ है कि इसमें कम से कम एक पद वर्गाकार होता है। इसे द्विघातीय समीकरण भी कहा जाता है। द्विघातीय समीकरण का सामान्य रूप है: | |||
<math>ax^2+bx+c=0</math> | |||
जहाँ <math>x</math> एक अज्ञात चर है और <math>a</math>, <math>b</math>, और <math>c</math> वास्तविक गुणांक हैं। उदाहरण के लिए, <math>x^2+2x+1</math> एक द्विघात या द्विघातीय समीकरण है। यहाँ, <math>a\neq0</math> क्योंकि यदि यह शून्य के समान है तो समीकरण अब द्विघातीय नहीं रहेगा और यह एक [[रैखिक समीकरण]] बन जाएगा, जैसे: | |||
<math>bx+c=0</math> | |||
अत: इस समीकरण को द्विघात समीकरण नहीं कहा जा सकता। | |||
पदों <math>a</math>, <math>b</math>, और <math>c</math> को द्विघात गुणांक भी कहा जाता है। | |||
हमें पहले ही द्विघातीय समीकरणों के बारे में जानकारी है और हमने उनको वास्तविक संख्याओं के समुच्चय में उन स्थितियों में हल किया है जहाँ विविक्तकर <math>\geq0 </math> है। अब | |||
समीकरण के बारे में विचार करते हैं: | |||
<math>ax^2+bx+c=0</math> जिसमें <math>a</math>, <math>b</math>, और <math>c</math> वास्तविक गुणांक हैं और <math>a\neq0</math> | |||
- | मान लीजिए कि <math>b^2-4ac<0</math> | ||
हम जानते हैं कि हम [[सम्मिश्र संख्याएँ|सम्मिश्र संख्याओं]] के समुच्चय में ऋणात्मक वास्तविक संख्याओं के वर्गमूल निकाल सकते हैं। इसलिए उपर्युक्त समीकरण के हल सम्मिश्र संख्याओं के समुच्चय में हैं जोकि | |||
- | <math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}=\frac{-b\pm\sqrt{4ac-b^2}i}{2a}</math> द्वारा प्राप्त होते हैं। | ||
“एक बहुपद समीकरण का कम से कम एक मूल होता है" । | “एक बहुपद समीकरण का कम से कम एक मूल होता है" । | ||
Line 33: | Line 27: | ||
इस प्रमेय के फलस्वरूप हम निम्नलिखित महत्त्वपूर्ण परिणाम पर पहँचते हैं। | इस प्रमेय के फलस्वरूप हम निम्नलिखित महत्त्वपूर्ण परिणाम पर पहँचते हैं। | ||
"<math>n</math> घात की एक बहुपद समीकरण में <math>n</math> मूल होते हैं।" | |||
[[Category:सम्मिश्र संख्याएँ और द्विघातीय समीकरण]] | [[Category:सम्मिश्र संख्याएँ और द्विघातीय समीकरण]] | ||
[[Category:कक्षा-11]][[Category:गणित]] | [[Category:कक्षा-11]][[Category:गणित]] |
Latest revision as of 09:33, 5 November 2024
द्विघातीय समीकरण को द्वितीय घात के बहुपद समीकरण के रूप में परिभाषित किया जा सकता है, जिसका अर्थ है कि इसमें कम से कम एक पद वर्गाकार होता है। इसे द्विघातीय समीकरण भी कहा जाता है। द्विघातीय समीकरण का सामान्य रूप है:
जहाँ एक अज्ञात चर है और , , और वास्तविक गुणांक हैं। उदाहरण के लिए, एक द्विघात या द्विघातीय समीकरण है। यहाँ, क्योंकि यदि यह शून्य के समान है तो समीकरण अब द्विघातीय नहीं रहेगा और यह एक रैखिक समीकरण बन जाएगा, जैसे:
अत: इस समीकरण को द्विघात समीकरण नहीं कहा जा सकता।
पदों , , और को द्विघात गुणांक भी कहा जाता है।
हमें पहले ही द्विघातीय समीकरणों के बारे में जानकारी है और हमने उनको वास्तविक संख्याओं के समुच्चय में उन स्थितियों में हल किया है जहाँ विविक्तकर है। अब
समीकरण के बारे में विचार करते हैं:
जिसमें , , और वास्तविक गुणांक हैं और
मान लीजिए कि
हम जानते हैं कि हम सम्मिश्र संख्याओं के समुच्चय में ऋणात्मक वास्तविक संख्याओं के वर्गमूल निकाल सकते हैं। इसलिए उपर्युक्त समीकरण के हल सम्मिश्र संख्याओं के समुच्चय में हैं जोकि
द्वारा प्राप्त होते हैं।
“एक बहुपद समीकरण का कम से कम एक मूल होता है" ।
इस प्रमेय के फलस्वरूप हम निम्नलिखित महत्त्वपूर्ण परिणाम पर पहँचते हैं।
" घात की एक बहुपद समीकरण में मूल होते हैं।"