माध्य विचलन: Difference between revisions
(added content) |
(added internal links) |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
माध्य विचलन का उपयोग यह गणना करने के लिए किया जाता है कि आँकडों के समुच्चय में मान केंद्र बिंदु से कितनी दूर हैं। माध्य, माध्यिका और बहुलक सभी आँकडों के समुच्चय के केंद्र बिंदु बनाते हैं। दूसरे शब्दों में, माध्य विचलन का उपयोग केंद्रीय बिंदु से आँकडों के निरपेक्ष विचलन के औसत की गणना करने के लिए किया जाता है। वर्गीकृत और अवर्गीकृत दोनों आँकडों के लिए माध्य विचलन की गणना की जा सकती है। | माध्य विचलन का उपयोग यह गणना करने के लिए किया जाता है कि [[आंकड़े|आँकडों]] के समुच्चय में मान केंद्र बिंदु से कितनी दूर हैं। माध्य, माध्यिका और बहुलक सभी आँकडों के समुच्चय के केंद्र बिंदु बनाते हैं। दूसरे शब्दों में, माध्य विचलन का उपयोग केंद्रीय बिंदु से आँकडों के निरपेक्ष विचलन के औसत की गणना करने के लिए किया जाता है। वर्गीकृत और अवर्गीकृत दोनों आँकडों के लिए माध्य विचलन की गणना की जा सकती है। | ||
माध्य विचलन मानक विचलन की तुलना में परिवर्तनशीलता का एक सरल माप है। जब हम आँकडों के केंद्र बिंदु से औसत विचलन ज्ञात करना चाहते हैं, तो माध्य विचलन का उपयोग किया जाता है। इस लेख में, हम माध्य विचलन, इसके सूत्र, उदाहरणों के साथ-साथ गुण और दोष पर गहराई से दृष्टि डालेंगे। | माध्य विचलन मानक विचलन की तुलना में परिवर्तनशीलता का एक सरल माप है। जब हम आँकडों के केंद्र बिंदु से औसत विचलन ज्ञात करना चाहते हैं, तो माध्य विचलन का उपयोग किया जाता है। इस लेख में, हम माध्य विचलन, इसके सूत्र, उदाहरणों के साथ-साथ गुण और दोष पर गहराई से दृष्टि डालेंगे। | ||
सांख्यिकी और गणित में, विचलन एक माप है जिसका उपयोग किसी चर के प्रेक्षित मान और अपेक्षित मान के बीच अंतर ज्ञात करने के लिए किया जाता है। सरल शब्दों में, विचलन केंद्र बिंदु से दूरी है। इसी तरह, माध्य विचलन का उपयोग यह गणना करने के लिए किया जाता है कि मान आँकडों के समुच्चय के मध्य से कितनी दूर हैं। | [[सांख्यिकी]] और गणित में, विचलन एक माप है जिसका उपयोग किसी चर के प्रेक्षित मान और अपेक्षित मान के बीच अंतर ज्ञात करने के लिए किया जाता है। सरल शब्दों में, विचलन केंद्र बिंदु से दूरी है। इसी तरह, माध्य विचलन का उपयोग यह गणना करने के लिए किया जाता है कि मान आँकडों के समुच्चय के मध्य से कितनी दूर हैं। | ||
== परिभाषा == | == परिभाषा == | ||
Line 16: | Line 16: | ||
चरण 3: अब, चरण 2 में प्राप्त उन मानों का माध्य ज्ञात करें। | चरण 3: अब, चरण 2 में प्राप्त उन मानों का माध्य ज्ञात करें। | ||
किसी आँकडों के बिंदु के प्रेक्षित मान और अपेक्षित मान के बीच के अंतर को सांख्यिकी में विचलन के रूप में जाना जाता है। इस प्रकार, माध्य विचलन या माध्य निरपेक्ष विचलन आँकडों के समुच्चय के माध्य, माध्यिका या बहुलक से आँकडों बिंदु का औसत विचलन है। माध्य विचलन को संक्षिप्त रूप में इस प्रकार लिखा जा सकता है | किसी आँकडों के बिंदु के प्रेक्षित मान और अपेक्षित मान के बीच के अंतर को सांख्यिकी में विचलन के रूप में जाना जाता है। इस प्रकार, माध्य विचलन या माध्य निरपेक्ष विचलन आँकडों के समुच्चय के माध्य, [[माध्यिका]] या बहुलक से आँकडों बिंदु का औसत विचलन है। माध्य विचलन को संक्षिप्त रूप में इस प्रकार लिखा जा सकता है | ||
== माध्य विचलन सूत्र == | == माध्य विचलन सूत्र == | ||
Line 57: | Line 57: | ||
चरण 5: इस मान को कुल प्रेक्षणों की संख्या से विभाजित करें। इससे माध्य विचलन प्राप्त होता है। चूँकि 6 प्रेक्षण हैं, इसलिए <math>\frac{16}{6} = 2.67</math> जो माध्य के बारे में माध्य विचलन है। | चरण 5: इस मान को कुल प्रेक्षणों की संख्या से विभाजित करें। इससे माध्य विचलन प्राप्त होता है। चूँकि 6 प्रेक्षण हैं, इसलिए <math>\frac{16}{6} = 2.67</math> जो माध्य के बारे में माध्य विचलन है। | ||
== उदाहरण == | |||
'''उदाहरण''' : <math>\{{12, 20, 32, 16, 5}\}</math> के लिए माध्य के बारे में माध्य विचलन ज्ञात करें | |||
'''समाधान''': आँकड़ें अवर्गीकृत है, इसलिए माध्य <math>= (12 + 20 + 32 + 16 + 5) / 5 = 17</math> | |||
{| class="wikitable" | |||
|+ | |||
!<math>x</math> | |||
!<math>\left\vert x-\bar{x} \right\vert</math> | |||
|- | |||
|12 | |||
|5 | |||
|- | |||
|20 | |||
|3 | |||
|- | |||
|32 | |||
|15 | |||
|- | |||
|16 | |||
|1 | |||
|- | |||
|5 | |||
|12 | |||
|- | |||
|Total | |||
|36 | |||
|} | |||
सूत्र <math>MD = \frac{\sum_{1}^n \displaystyle\left\vert x_i - \bar{x} \right\vert}{n}</math> का उपयोग करते हुए, | |||
<math>\frac{\textstyle \sum_{1}^5 \displaystyle\left\vert x_i-\mu \right\vert}{5}= \frac{36}{5} = 7.2</math> | |||
उत्तर: माध्य के बारे में माध्य विचलन<math>= 7.2</math> | |||
== माध्य विचलन के गुण और दोष == | == माध्य विचलन के गुण और दोष == |
Latest revision as of 10:30, 26 November 2024
माध्य विचलन का उपयोग यह गणना करने के लिए किया जाता है कि आँकडों के समुच्चय में मान केंद्र बिंदु से कितनी दूर हैं। माध्य, माध्यिका और बहुलक सभी आँकडों के समुच्चय के केंद्र बिंदु बनाते हैं। दूसरे शब्दों में, माध्य विचलन का उपयोग केंद्रीय बिंदु से आँकडों के निरपेक्ष विचलन के औसत की गणना करने के लिए किया जाता है। वर्गीकृत और अवर्गीकृत दोनों आँकडों के लिए माध्य विचलन की गणना की जा सकती है।
माध्य विचलन मानक विचलन की तुलना में परिवर्तनशीलता का एक सरल माप है। जब हम आँकडों के केंद्र बिंदु से औसत विचलन ज्ञात करना चाहते हैं, तो माध्य विचलन का उपयोग किया जाता है। इस लेख में, हम माध्य विचलन, इसके सूत्र, उदाहरणों के साथ-साथ गुण और दोष पर गहराई से दृष्टि डालेंगे।
सांख्यिकी और गणित में, विचलन एक माप है जिसका उपयोग किसी चर के प्रेक्षित मान और अपेक्षित मान के बीच अंतर ज्ञात करने के लिए किया जाता है। सरल शब्दों में, विचलन केंद्र बिंदु से दूरी है। इसी तरह, माध्य विचलन का उपयोग यह गणना करने के लिए किया जाता है कि मान आँकडों के समुच्चय के मध्य से कितनी दूर हैं।
परिभाषा
माध्य विचलन औसत निरपेक्ष विचलन के अंतर्गत आता है। औसत निरपेक्ष विचलन को आँकडों के केंद्रीय बिंदु से निरपेक्ष विचलन के औसत के रूप में परिभाषित किया जा सकता है। केंद्रीय बिंदु की गणना माध्य, माध्यिका या बहुलक का उपयोग करके की जा सकती है।
माध्य विचलन को एक सांख्यिकीय माप के रूप में परिभाषित किया जाता है जिसका उपयोग दिए गए आँकडों के समुच्चय के माध्य मान से औसत विचलन की गणना करने के लिए किया जाता है। आँकडों मानों के माध्य विचलन की गणना नीचे दी गई प्रक्रिया का उपयोग करके आसानी से की जा सकती है।
चरण 1: दिए गए आँकडों के मानों के लिए माध्य मान ज्ञात करें
चरण 2: अब, दिए गए प्रत्येक आँकडों के मान से माध्य मान घटाएँ (ध्यान दें: माइनस चिह्न को अनदेखा करें)
चरण 3: अब, चरण 2 में प्राप्त उन मानों का माध्य ज्ञात करें।
किसी आँकडों के बिंदु के प्रेक्षित मान और अपेक्षित मान के बीच के अंतर को सांख्यिकी में विचलन के रूप में जाना जाता है। इस प्रकार, माध्य विचलन या माध्य निरपेक्ष विचलन आँकडों के समुच्चय के माध्य, माध्यिका या बहुलक से आँकडों बिंदु का औसत विचलन है। माध्य विचलन को संक्षिप्त रूप में इस प्रकार लिखा जा सकता है
माध्य विचलन सूत्र
उपलब्ध आँकडों के प्रकार और केंद्रीय बिंदु के प्रकार के आधार पर, माध्य विचलन की गणना करने के लिए कई अलग-अलग सूत्र हो सकते हैं। नीचे विभिन्न माध्य विचलन सूत्र दिए गए हैं।
अवर्गीकृत आँकड़े | वर्गीकृत आँकड़े | |
---|---|---|
माध्य | ||
माध्यिका |
उदाहरण
मान लीजिए कि हमारे पास द्वारा दिए गए प्रेक्षणों का एक समूह है और हम माध्य के बारे में माध्य विचलन की गणना करना चाहते हैं। हम द्वारा दिए गए आँकडों का माध्य ज्ञात करते हैं। फिर हम प्रत्येक मान से माध्य घटाते हैं, प्रत्येक परिणाम का निरपेक्ष मान लेते हैं और उन्हें जोड़कर प्राप्त करते हैं। अंत में, हम इस मान को प्रेक्षणों की कुल संख्या () से विभाजित करके माध्य विचलन प्राप्त करते हैं।
अवर्गीकृत आँकडों के लिए माध्य विचलन सूत्र
आँकडें जो क्रमबद्ध या समूहों में वर्गीकृत नहीं होता है और यथाप्राप्त रूप में रहता है उसे अवर्गीकृत आँकडों के रूप में जाना जाता है। अवर्गीकृत आँकडों के लिए माध्य विचलन की गणना करने के लिए सूत्र इस प्रकार है:
यहाँ, वें अवलोकन का प्रतिनिधित्व करता है, केंद्रीय बिंदु (माध्य, माध्यिका या बहुलक) का प्रतिनिधित्व करता है, और '' आँकडों के समुच्चय में अवलोकनों की संख्या है।
माध्य विचलन की गणना
इस बात पर ध्यान दिए बिना कि माध्य, माध्यिका या बहुलक के बारे में माध्य विचलन निर्धारित करने की आवश्यकता है, सामान्य चरण समान रहते हैं। हमारे पास उपलब्ध आँकडों के प्रकार के आधार पर माध्य, माध्यिका या बहुलक की गणना करने के लिए उपयोग किए जाने वाले सूत्रों में एकमात्र अंतर होगा। मान लीजिए कि आँकडों के समुच्चय के लिए माध्य के बारे में माध्य विचलन निर्धारित किया जाना है। फिर नीचे दिए गए चरणों का पालन किया जा सकता है।
चरण 1: दिए गए आँकडों के मानों के माध्यके , बहुलक या माध्यिका के मान की गणना करें। यहाँ, हम द्वारा दिया गया माध्य पाते हैं।
चरण 2: प्रत्येक आँकडों के बिंदु से केंद्रीय बिंदु (यहाँ, माध्य) का मान घटाएँ। ।
चरण 3: अब चरण 2 में प्राप्त मानों का निरपेक्ष मान लें। मान हैं
चरण 4: चरण 3 में प्राप्त सभी मानों का योग लें। इससे प्राप्त होता है
चरण 5: इस मान को कुल प्रेक्षणों की संख्या से विभाजित करें। इससे माध्य विचलन प्राप्त होता है। चूँकि 6 प्रेक्षण हैं, इसलिए जो माध्य के बारे में माध्य विचलन है।
उदाहरण
उदाहरण : के लिए माध्य के बारे में माध्य विचलन ज्ञात करें
समाधान: आँकड़ें अवर्गीकृत है, इसलिए माध्य
12 | 5 |
20 | 3 |
32 | 15 |
16 | 1 |
5 | 12 |
Total | 36 |
सूत्र का उपयोग करते हुए,
उत्तर: माध्य के बारे में माध्य विचलन
माध्य विचलन के गुण और दोष
माध्य विचलन एक सांख्यिकीय माप है और इसलिए, इसके गुण और दोष हैं। इसका उपयोग केंद्रीय मूल्य के संबंध में आँकडों के प्रसार की जाँच करने में किया जाता है।
माध्य विचलन के गुण
माध्य विचलन एक उपयोगी उपाय है क्योंकि यह अन्य प्रकार के सांख्यिकीय उपायों की कमियों को दूर कर सकता है। कुछ गुण नीचे दिए गए हैं:
- इसकी गणना करना आसान है और इसे समझना सरल है।
- यह आउटलेयर(मुख्य बिंदु से दूर या अलग रहने वाला) से अत्यधिक प्रभावित नहीं होता है।
- व्यापार और वाणिज्य में इसका व्यापक रूप से उपयोग किया जाता है।
- अन्य सांख्यिकीय उपायों की तुलना में इसमें सबसे कम नमूना उतार-चढ़ाव होता है।
- यह एक अच्छा तुलना उपाय है क्योंकि यह मध्य-मूल्य से विचलन पर आधारित है।
माध्य विचलन के दोष
माध्य विचलन आगे बीजगणितीय उपचार के लिए सक्षम नहीं है, इसलिए, इससे उपयोगिता कम हो सकती है। माध्य विचलन के अन्य दोष नीचे सूचीबद्ध हैं:
- इसे कठोर रूप से परिभाषित नहीं किया गया है क्योंकि इसे माध्य, माध्यिका और बहुलक के संबंध में गणना की जा सकती है।
- सामाजिक अध्ययन आँकडों का विश्लेषण करने के लिए संभवतः ही कभी इस उपाय का उपयोग करते हैं।
- नकारात्मक और सकारात्मक चिह्नों को अनदेखा कर दिया जाता है क्योंकि हम निरपेक्ष मान लेते हैं। इससे परिणाम में अशुद्धियाँ हो सकती हैं।
महत्वपूर्ण टिप्पणियाँ
- माध्य विचलन एक सांख्यिकीय माप है जिसका उपयोग आँकडों के केंद्रीय बिंदु के संबंध में पूर्ण विचलन का औसत मूल्य देने के लिए किया जाता है।
- माध्य विचलन की गणना माध्य, माध्यिका और बहुलक के आधार पर की जा सकती है।
- अवर्गीकृत आँकडों के लिए माध्य विचलन की गणना करने का सामान्य सूत्र है और वर्गीकृत आँकडों के है।
- मानक विचलन की तुलना में माध्य विचलन का उपयोग कम बार किया जाता है।