परिमाण की कोटि: Difference between revisions
Listen
No edit summary |
|||
Line 4: | Line 4: | ||
== गणितीय अभ्यावेदन == | == गणितीय अभ्यावेदन == | ||
वैज्ञानिक | वैज्ञानिक अभ्यावेदन में व्यक्त किए जाने पर कोटि अंकों या शून्यों की संख्या से निर्धारित होता है। उदाहरण के लिए, यदि कोई मात्रा <math>1,000,000</math> के रूप में व्यक्त की जाती है, तो इसे वैज्ञानिक संकेतन में <math>1 \times 10^6</math> के रूप में लिखा जा सकता है। इस मामले में परिमाण का क्रम <math>6</math> है, क्योंकि <math>1</math> के बाद छह शून्य हैं। | ||
परिमाण के क्रम की अवधारणा का उपयोग प्रायः दो मूल्यों के बीच के मापदंड में सापेक्ष अंतर का वर्णन करने के लिए किया जाता है। उदाहरण के लिए, यदि आप <math>1,000</math> <math>(10^3)</math> से <math>1,000,000</math> <math>(10^6)</math> की तुलना करते हैं, तो आप कह सकते हैं कि परिमाण-तुलना की दृष्टि से, बाद वाली संख्या का मान, पहली वाली संख्या के मान की अपेक्षा से ,तीन अनुक्रम में बड़ा है। इसका सीधा अर्थ है कि दूसरा मान पहले से हज़ार गुना बड़ा है। बहुत बड़े मापों में इस प्रकार के गणितीय अभ्यावेदन | परिमाण के क्रम की अवधारणा का उपयोग प्रायः दो मूल्यों के बीच के मापदंड में सापेक्ष अंतर का वर्णन करने के लिए किया जाता है। उदाहरण के लिए, यदि आप <math>1,000</math> <math>(10^3)</math> से <math>1,000,000</math> <math>(10^6)</math> की तुलना करते हैं, तो आप कह सकते हैं कि परिमाण-तुलना की दृष्टि से, बाद वाली संख्या का मान, पहली वाली संख्या के मान की अपेक्षा से ,तीन अनुक्रम में बड़ा है। इसका सीधा अर्थ है कि दूसरा मान पहले से हज़ार गुना बड़ा है। बहुत बड़े मापों में इस प्रकार के गणितीय अभ्यावेदन |
Revision as of 13:14, 18 July 2023
Order of magnitude
विज्ञान में, शब्द "परिमाण की कोटि" एक मान के मापदण्ड को संदर्भित करता है, जिसे प्रायः (दशम) के स्तर (पैमाने) पर मापा जाता है। यह सटीक मापक के बिना, किसी वस्तु के अनुमानित आकार या मात्रा का प्रतिनिधित्व करता है।
गणितीय अभ्यावेदन
वैज्ञानिक अभ्यावेदन में व्यक्त किए जाने पर कोटि अंकों या शून्यों की संख्या से निर्धारित होता है। उदाहरण के लिए, यदि कोई मात्रा के रूप में व्यक्त की जाती है, तो इसे वैज्ञानिक संकेतन में के रूप में लिखा जा सकता है। इस मामले में परिमाण का क्रम है, क्योंकि के बाद छह शून्य हैं।
परिमाण के क्रम की अवधारणा का उपयोग प्रायः दो मूल्यों के बीच के मापदंड में सापेक्ष अंतर का वर्णन करने के लिए किया जाता है। उदाहरण के लिए, यदि आप से की तुलना करते हैं, तो आप कह सकते हैं कि परिमाण-तुलना की दृष्टि से, बाद वाली संख्या का मान, पहली वाली संख्या के मान की अपेक्षा से ,तीन अनुक्रम में बड़ा है। इसका सीधा अर्थ है कि दूसरा मान पहले से हज़ार गुना बड़ा है। बहुत बड़े मापों में इस प्रकार के गणितीय अभ्यावेदन
अनुसंधान और गणना में अनुप्रयोग
वैज्ञानिक अनुसंधान और गणना में, परिमाण अनुमानों का क्रम मूल्य के पैमाने या प्रभाव को शीघ्रता से समझने के लिए उपयोगी होता है। वे एक मोटा सन्निकटन प्रदान करते हैं और वैज्ञानिकों को भविष्यवाणी करने, आंकड़ों का विश्लेषण करने, या कुछ घटनाओं या प्रक्रियाओं की व्यवहार्यता निर्धारित करने में मदद करते हैं। बड़ी या छोटी संख्या के साथ व्यवहार करते समय परिमाण गणना का क्रम विशेष रूप से सहायक होता है, जिससे वैज्ञानिकों को इसके सटीक मूल्य के बजाय मूल्य के सामान्य परिमाण के साथ काम करने की अनुमति मिलती है।
संक्षेप में
विज्ञान में, किसी भी मूल्य को "परिमाण की कोटि" (दशम) के स्तर (पैमाने) में व्यक्त या संदर्भित करने में सक्षम बनाता है। यह वैज्ञानिकों को मोटा अनुमान लगाने, मात्राओं की तुलना करने और मूल्यों के बीच परिमाण में सापेक्ष अंतर को समझने की अनुमति देता है।