लंबन विधि: Difference between revisions
Listen
No edit summary |
|||
Line 8: | Line 8: | ||
इसी तरह, खगोलविद तारों की दूरी मापने के लिए लंबन विधि का उपयोग करते हैं। वे पृथ्वी की कक्षा में एक बिंदु से आकाश में एक तारे की स्थिति का निरीक्षण करते हैं और फिर छह महीने बाद कक्षा के विपरीत दिशा से अवलोकन को दोहराते हैं। अधिक दूर की वस्तुओं की पृष्ठभूमि के विरुद्ध तारे की दो स्थितियों की तुलना करके, खगोलविद लंबन के कोण को माप सकते हैं। | इसी तरह, खगोलविद तारों की दूरी मापने के लिए लंबन विधि का उपयोग करते हैं। वे पृथ्वी की कक्षा में एक बिंदु से आकाश में एक तारे की स्थिति का निरीक्षण करते हैं और फिर छह महीने बाद कक्षा के विपरीत दिशा से अवलोकन को दोहराते हैं। अधिक दूर की वस्तुओं की पृष्ठभूमि के विरुद्ध तारे की दो स्थितियों की तुलना करके, खगोलविद लंबन के कोण को माप सकते हैं। | ||
== सिद्धांत व उसका उपयोग == | |||
त्रिकोणासन नामक एक सिद्धांत का उपयोग करते हुए, खगोलविद मापा लंबन कोण के आधार पर तारे की दूरी निर्धारित कर सकते हैं। विचार यह है कि लंबन कोण जितना बड़ा होगा, तारा पृथ्वी के उतना ही करीब होगा। लंबन विधि खगोलविदों को पास के तारों की दूरी का सटीक अनुमान लगाने की अनुमति देती है। | त्रिकोणासन नामक एक सिद्धांत का उपयोग करते हुए, खगोलविद मापा लंबन कोण के आधार पर तारे की दूरी निर्धारित कर सकते हैं। विचार यह है कि लंबन कोण जितना बड़ा होगा, तारा पृथ्वी के उतना ही करीब होगा। लंबन विधि खगोलविदों को पास के तारों की दूरी का सटीक अनुमान लगाने की अनुमति देती है। | ||
Revision as of 07:59, 3 January 2024
Parallax method
लंबन विधि एक वैज्ञानिक तकनीक है जिसका उपयोग अंतरिक्ष में वस्तुओं के बीच की दूरी को मापने के लिए किया जाता है, विशेषकर पास के सितारों के लिए। यह लंबन नामक अवधारणा पर निर्भर करता है, जिसे एक साधारण प्रयोग से समझा जा सकता है।
एक उदाहरण
अपनी उंगली को हाथ की लंबाई पर पकड़ें और एक आंख बंद कर लें। अब, आंखें बदलें और ध्यान दें कि आपकी उंगली पृष्ठभूमि के सापेक्ष किस तरह शिफ्ट होती दिख रही है। पृष्ठभूमि के खिलाफ आपकी उंगली की आभासी पारी को लंबन कहा जाता है। यह प्रभाव इसलिए होता है क्योंकि प्रत्येक आंख आपकी उंगली को थोड़ा अलग कोण से देखती है।
इसी तरह, खगोलविद तारों की दूरी मापने के लिए लंबन विधि का उपयोग करते हैं। वे पृथ्वी की कक्षा में एक बिंदु से आकाश में एक तारे की स्थिति का निरीक्षण करते हैं और फिर छह महीने बाद कक्षा के विपरीत दिशा से अवलोकन को दोहराते हैं। अधिक दूर की वस्तुओं की पृष्ठभूमि के विरुद्ध तारे की दो स्थितियों की तुलना करके, खगोलविद लंबन के कोण को माप सकते हैं।
सिद्धांत व उसका उपयोग
त्रिकोणासन नामक एक सिद्धांत का उपयोग करते हुए, खगोलविद मापा लंबन कोण के आधार पर तारे की दूरी निर्धारित कर सकते हैं। विचार यह है कि लंबन कोण जितना बड़ा होगा, तारा पृथ्वी के उतना ही करीब होगा। लंबन विधि खगोलविदों को पास के तारों की दूरी का सटीक अनुमान लगाने की अनुमति देती है।
संक्षेप में
लंबन विधि एक ऐसी तकनीक है जिसका उपयोग खगोलविद पृथ्वी की कक्षा में विभिन्न बिंदुओं से देखी गई अपनी स्थिति के स्पष्ट बदलाव को देखकर आस-पास के सितारों की दूरी को मापने के लिए करते हैं। इस पद्धति का उपयोग करके वैज्ञानिक हमारे ब्रह्मांड की विशाल दूरी और संरचना के बारे में बहुमूल्य जानकारी प्राप्त करते हैं।