प्रमेय: Difference between revisions
No edit summary |
Ramamurthy (talk | contribs) (Category updated) |
||
Line 21: | Line 21: | ||
इस प्रकार से तर्क संगकता बनाने में ,एक प्रमाण भी बन जाता है ,जिससे यह स्पष्ट होता है की कि कथन '''अ)''' के सत्य होने पर कथन '''ब)''' भी क्यों सत्य होना चाहिए। | इस प्रकार से तर्क संगकता बनाने में ,एक प्रमाण भी बन जाता है ,जिससे यह स्पष्ट होता है की कि कथन '''अ)''' के सत्य होने पर कथन '''ब)''' भी क्यों सत्य होना चाहिए। | ||
लिखने में इस प्रकार की शैली, तार्किक विचार शीलता को शास्त्र रूप में संहित करने में सहायक बनती है। आगे, यह स्पष्ट होने में भी अधिक श्रम नहीं लगता की शब्द प्रमाण, चिन्ह प्रमाण का ही दूसरा रूप है।[[Category:कक्षा-9]][[Category:गणित]] | लिखने में इस प्रकार की शैली, तार्किक विचार शीलता को शास्त्र रूप में संहित करने में सहायक बनती है। आगे, यह स्पष्ट होने में भी अधिक श्रम नहीं लगता की शब्द प्रमाण, चिन्ह प्रमाण का ही दूसरा रूप है। | ||
[[Category:गणित में उपपत्तियाँ]] | |||
[[Category:कक्षा-9]][[Category:गणित]] |
Revision as of 18:08, 6 August 2023
प्रमेय(English: Theorem (थ्योरम)), गणित या तर्क में एक सूत्र, प्रस्ताव, या कथन, ज्ञान प्राप्त करने की परम्परा का निगमन है। व्यावहारिक रूप से, प्रमेय, एक सूत्र (अथवा सूत्रों), प्रस्ताव (अथवा प्रस्तावों) , या कथन (अथवा प्रस्तावों) के मध्य सम्बन्ध (अथवा समबन्धों) के स्थापन में प्रयुक्त होते हैं। प्रायः वैज्ञानिक समझ की प्रगति में प्रमेय को,एक सामान्य सिद्धांत या सिद्धांत के भाग,एक प्रत्यक्ष या अप्रत्यक्ष सत्य के निरूपण में स्वीकृत या प्रस्तावित कर, एक विचार-स्थापन के उपयोग में लाया जाता है।
प्रमेय, सिद्धांत, नियम :तार्किक पद्दति विचार का मूल है
प्रमेय सिद्ध होते हैं, सिद्धांत नहीं। गणित में किसी प्रमेय के सिद्ध होने से पहले उसे अनुमान कहते हैं। विज्ञान में, केवल अच्छी तरह से परीक्षित परिकल्पना ही सिद्धांत का अंग बन सकती है।
विशेष रूप से,प्रमेय, गणितीय तर्कशास्त्र और विचाराधीन प्रणालियों के,स्वयंसिद्धों से सिद्ध किए गए परिणाम हैं। सामान्यतः, नियम स्वयंसिद्धों को संदर्भित करते हैं, लेकिन यह भी पूर्णतः स्थापित और सामान्य सूत्रों का उल्लेख कर सकते हैं जैसे ज्यामिति में साइन का नियम और कोसाइन का नियम, जो वास्तव में प्रमेय हैं।
गणित में प्रमेय
गणितीय प्रमेयों, को उन कथनों के रूप में परिभाषित किया जा सकता है, जिन्हें पहले स्वीकृत कथनों, गणितीय संक्रियाओं या तर्कों के माध्यम से सत्य के रूप में स्वीकार किया जाता रहा हो। किसी भी गणित प्रमेय के लिए, एक स्थापित प्रमाण होता है, जो प्रमेय-कथन की सत्यता को सही ठहराता है।
प्रमेय लिखने की शैली
प्रायः कुछ इस प्रकार बनती है:
यदि एक कथन अ) सत्य है, तो कथन ब) सत्य है।
यहां मान्यता, यह है की,
"जब भी कथन अ) मान्य होता है, तब कथन ब) भी मान्य होना चाहिए।"
इस प्रकार से तर्क संगकता बनाने में ,एक प्रमाण भी बन जाता है ,जिससे यह स्पष्ट होता है की कि कथन अ) के सत्य होने पर कथन ब) भी क्यों सत्य होना चाहिए।
लिखने में इस प्रकार की शैली, तार्किक विचार शीलता को शास्त्र रूप में संहित करने में सहायक बनती है। आगे, यह स्पष्ट होने में भी अधिक श्रम नहीं लगता की शब्द प्रमाण, चिन्ह प्रमाण का ही दूसरा रूप है।