खंडशः समाकलन: Difference between revisions

From Vidyalayawiki

(Updated Category)
(added content)
Line 1: Line 1:
Integration by Parts
कलन में भागों द्वारा एकीकरण का विचार 1715 में ब्रूक टेलर द्वारा प्रस्तावित किया गया था, जिन्होंने प्रसिद्ध टेलर के प्रमेय का भी प्रस्ताव रखा था। आम तौर पर, समाकलन की गणना उन कार्यों के लिए की जाती है जिनके लिए विभेदन सूत्र मौजूद होते हैं। यहाँ भागों द्वारा एकीकरण एक अतिरिक्त तकनीक है जिसका उपयोग कार्यों के गुणनफल के एकीकरण को खोजने के लिए किया जाता है और इसे आंशिक एकीकरण भी कहा जाता है। यह कार्यों के गुणनफल के एकीकरण को ऐसे समाकलनों में बदल देता है जिनके लिए समाधान की गणना आसानी से की जा सकती है।
 
कुछ व्युत्क्रम त्रिकोणमितीय फलनों और लघुगणकीय फलनों में समाकलन सूत्र नहीं होते हैं, और यहाँ हम भागों द्वारा एकीकरण सूत्र का उपयोग कर सकते हैं जिसे लोकप्रिय रूप से यूवी एकीकरण सूत्र के रूप में भी जाना जाता है। यहाँ हम भागों द्वारा एकीकरण की व्युत्पत्ति, ग्राफ़िकल प्रतिनिधित्व, अनुप्रयोग और उदाहरणों की जाँच करेंगे।
 
भागों द्वारा एकीकरण क्या है?
 
भागों द्वारा एकीकरण का उपयोग दो या अधिक कार्यों के उत्पाद को एकीकृत करने के लिए किया जाता है। एकीकृत किए जाने वाले दो फ़ंक्शन f(x) और g(x) ∫f(x)·g(x) के रूप के हैं। इस प्रकार, इसे एकीकरण का गुणन नियम कहा जा सकता है। दो फ़ंक्शनों में से, पहला फ़ंक्शन f(x) इस तरह से चुना जाता है कि उसका व्युत्पन्न सूत्र मौजूद हो, और दूसरा फ़ंक्शन g(x) इस तरह से चुना जाता है कि ऐसे फ़ंक्शन का एक अभिन्न अंग मौजूद हो।
 
∫ f(x)·g(x)·dx = f(x) ∫ g(x)·dx - ∫ [(f'(x) ∫ g(x)·dx)·dx] + C
 
(प्रथम फ़ंक्शन x द्वितीय फ़ंक्शन) का एकीकरण = (प्रथम फ़ंक्शन) x (द्वितीय फ़ंक्शन का एकीकरण) - (प्रथम फ़ंक्शन का विभेदन x द्वितीय फ़ंक्शन का एकीकरण) का एकीकरण।
 
भागों द्वारा एकीकरण में, सूत्र को दो भागों में विभाजित किया जाता है और हम दूसरे भाग में पहले फ़ंक्शन f(x) का व्युत्पन्न और दोनों भागों में दूसरे फ़ंक्शन g(x) का समाकलन देख सकते हैं। सरलता के लिए, इन फ़ंक्शन को अक्सर क्रमशः 'u' और 'dv' के रूप में दर्शाया जाता है। 'u' और 'dv' के संकेतन का उपयोग करके uv एकीकरण सूत्र है:
 
∫ u dv = uv - ∫ v du.
 
भागों द्वारा एकीकरण सूत्र
 
भागों द्वारा एकीकरण सूत्र का उपयोग दो अलग-अलग प्रकार के कार्यों जैसे लघुगणक, व्युत्क्रम त्रिकोणमितीय, बीजीय, त्रिकोणमितीय और घातांकीय कार्यों के उत्पाद का अभिन्न अंग खोजने के लिए किया जाता है। भागों द्वारा एकीकरण सूत्र का उपयोग किसी उत्पाद का अभिन्न अंग खोजने के लिए किया जाता है। विभेदन के उत्पाद नियम में जहाँ हम किसी उत्पाद का विभेदन करते हैं, uv, u(x), और v(x) को किसी भी क्रम में चुना जा सकता है। लेकिन भागों द्वारा एकीकरण सूत्र का उपयोग करते समय, पहला फ़ंक्शन u(x) चुनने के लिए, हमें यह देखना होगा कि निम्नलिखित में से कौन सा फ़ंक्शन निम्नलिखित क्रम में पहले आता है और फिर इसे u मान लें।
 
[[Category:समाकलन]][[Category:गणित]][[Category:कक्षा-12]]
[[Category:समाकलन]][[Category:गणित]][[Category:कक्षा-12]]

Revision as of 10:58, 6 December 2024

कलन में भागों द्वारा एकीकरण का विचार 1715 में ब्रूक टेलर द्वारा प्रस्तावित किया गया था, जिन्होंने प्रसिद्ध टेलर के प्रमेय का भी प्रस्ताव रखा था। आम तौर पर, समाकलन की गणना उन कार्यों के लिए की जाती है जिनके लिए विभेदन सूत्र मौजूद होते हैं। यहाँ भागों द्वारा एकीकरण एक अतिरिक्त तकनीक है जिसका उपयोग कार्यों के गुणनफल के एकीकरण को खोजने के लिए किया जाता है और इसे आंशिक एकीकरण भी कहा जाता है। यह कार्यों के गुणनफल के एकीकरण को ऐसे समाकलनों में बदल देता है जिनके लिए समाधान की गणना आसानी से की जा सकती है।

कुछ व्युत्क्रम त्रिकोणमितीय फलनों और लघुगणकीय फलनों में समाकलन सूत्र नहीं होते हैं, और यहाँ हम भागों द्वारा एकीकरण सूत्र का उपयोग कर सकते हैं जिसे लोकप्रिय रूप से यूवी एकीकरण सूत्र के रूप में भी जाना जाता है। यहाँ हम भागों द्वारा एकीकरण की व्युत्पत्ति, ग्राफ़िकल प्रतिनिधित्व, अनुप्रयोग और उदाहरणों की जाँच करेंगे।

भागों द्वारा एकीकरण क्या है?

भागों द्वारा एकीकरण का उपयोग दो या अधिक कार्यों के उत्पाद को एकीकृत करने के लिए किया जाता है। एकीकृत किए जाने वाले दो फ़ंक्शन f(x) और g(x) ∫f(x)·g(x) के रूप के हैं। इस प्रकार, इसे एकीकरण का गुणन नियम कहा जा सकता है। दो फ़ंक्शनों में से, पहला फ़ंक्शन f(x) इस तरह से चुना जाता है कि उसका व्युत्पन्न सूत्र मौजूद हो, और दूसरा फ़ंक्शन g(x) इस तरह से चुना जाता है कि ऐसे फ़ंक्शन का एक अभिन्न अंग मौजूद हो।

∫ f(x)·g(x)·dx = f(x) ∫ g(x)·dx - ∫ [(f'(x) ∫ g(x)·dx)·dx] + C

(प्रथम फ़ंक्शन x द्वितीय फ़ंक्शन) का एकीकरण = (प्रथम फ़ंक्शन) x (द्वितीय फ़ंक्शन का एकीकरण) - (प्रथम फ़ंक्शन का विभेदन x द्वितीय फ़ंक्शन का एकीकरण) का एकीकरण।

भागों द्वारा एकीकरण में, सूत्र को दो भागों में विभाजित किया जाता है और हम दूसरे भाग में पहले फ़ंक्शन f(x) का व्युत्पन्न और दोनों भागों में दूसरे फ़ंक्शन g(x) का समाकलन देख सकते हैं। सरलता के लिए, इन फ़ंक्शन को अक्सर क्रमशः 'u' और 'dv' के रूप में दर्शाया जाता है। 'u' और 'dv' के संकेतन का उपयोग करके uv एकीकरण सूत्र है:

∫ u dv = uv - ∫ v du.

भागों द्वारा एकीकरण सूत्र

भागों द्वारा एकीकरण सूत्र का उपयोग दो अलग-अलग प्रकार के कार्यों जैसे लघुगणक, व्युत्क्रम त्रिकोणमितीय, बीजीय, त्रिकोणमितीय और घातांकीय कार्यों के उत्पाद का अभिन्न अंग खोजने के लिए किया जाता है। भागों द्वारा एकीकरण सूत्र का उपयोग किसी उत्पाद का अभिन्न अंग खोजने के लिए किया जाता है। विभेदन के उत्पाद नियम में जहाँ हम किसी उत्पाद का विभेदन करते हैं, uv, u(x), और v(x) को किसी भी क्रम में चुना जा सकता है। लेकिन भागों द्वारा एकीकरण सूत्र का उपयोग करते समय, पहला फ़ंक्शन u(x) चुनने के लिए, हमें यह देखना होगा कि निम्नलिखित में से कौन सा फ़ंक्शन निम्नलिखित क्रम में पहले आता है और फिर इसे u मान लें।