समतल से दीए गए बिन्दु की दूरी: Difference between revisions

From Vidyalayawiki

(Updated Category)
(added content)
Line 1: Line 1:
Distance of a Point from a Plane
बिंदु और समतल के बीच की दूरी दिए गए बिंदु से गुजरने वाले समतल पर लंबवत की लंबाई है। दूसरे शब्दों में, हम कह सकते हैं कि बिंदु और समतल के बीच की दूरी दिए गए बिंदु से दिए गए समतल पर गिराए गए सामान्य वेक्टर की लंबाई है। यदि हम निर्देशांक (xo, yo, zo) वाले बिंदु P और समीकरण Ax + By + Cz = D के साथ दिए गए समतल के बीच की दूरी निर्धारित करना चाहते हैं, तो बिंदु P और दिए गए समतल के बीच की दूरी |Axo + Byo+ Czo + D|/√(A2 + B2 + C2) द्वारा दी जाती है।
 
== परिभाषा ==
बिंदु और समतल के बीच की दूरी बिंदु से दिए गए समतल तक की सबसे छोटी लंबवत दूरी है। सरल शब्दों में, किसी बिंदु से समतल तक की सबसे छोटी दूरी दिए गए बिंदु से दिए गए समतल पर गिराए गए सामान्य वेक्टर के समानांतर लंबवत की लंबाई है। आइए अब बिंदु और समतल के बीच की दूरी का सूत्र देखें।
 
== बिंदु और समतल के बीच की दूरी का सूत्र ==
बिंदु और समतल के बीच की सबसे छोटी दूरी सामान्य वेक्टर की लंबाई के बराबर होती है जो दिए गए बिंदु से शुरू होकर समतल को छूती है। निर्देशांक (xo, yo, zo) वाले बिंदु P और समीकरण Ax + By + Cz = D वाले दिए गए समतल π पर विचार करें। फिर, बिंदु P और समतल π के बीच की दूरी इस प्रकार दी गई है, |Axo + Byo+ Czo + D|/√(A2 + B2 + C2)।
 
== बिंदु और समतल के बीच की दूरी का प्रमाण ==
अब जब हम बिंदु और समतल के बीच की दूरी का सूत्र जानते हैं, तो आइए हम त्रि-आयामी ज्यामिति के विभिन्न सूत्रों का उपयोग करके इसका सूत्र निकालें। त्रि-आयामी अंतरिक्ष में निर्देशांक (xo, yo, zo) के साथ एक बिंदु P पर विचार करें, और सामान्य वेक्टर के साथ एक समतल, मान लें v = (A, B, C) और समतल पर निर्देशांक (x1, y1, z1) के साथ बिंदु Q। फिर समतल का समीकरण A(x - x1) + B(y - y1) + C(z - z1) = 0 द्वारा दिया जाता है। इस समीकरण को Ax + By + Cz + (- Ax1 - By1 - Cz1) = 0 ⇒ Ax + By + Cz + D = 0 के रूप में फिर से लिखा जा सकता है, जहाँ D = - (Ax1 + By1 + Cz1) है। इसलिए, हमारे पास है:
 
समतल का समीकरण: Ax + By + Cz + D = 0
 
बिंदु P: (xo, yo, zo)
 
सामान्य सदिश: Ai + Bj + Ck
 
मान लीजिए कि w, बिंदु P(xo, yo, zo) और Q(x1, y1, z1) को जोड़ने वाला सदिश है। फिर, w = (xo - x1, yo - y1, zo - z1)। अब, इकाई सामान्य सदिश की गणना करें, यानी, 1 के बराबर परिमाण वाला सामान्य सदिश जो सामान्य सदिश v को उसके परिमाण से भाग देकर प्राप्त किया जाता है। इकाई सामान्य सदिश इस प्रकार दिया जाता है,
 
n = v/||v||
 
= (A, B, C)/√(A2 + B2 + C2)
 
अब, बिंदु P और दिए गए समतल के बीच की दूरी इकाई सामान्य सदिश n पर सदिश w के प्रक्षेपण की लंबाई के अलावा और कुछ नहीं है। जैसा कि हम जानते हैं, सदिश n की लंबाई एक के बराबर है, बिंदु P से समतल तक की दूरी सदिश w और n के डॉट उत्पाद का निरपेक्ष मान है, अर्थात,
 
दूरी, d = |w.n|
 
= | (xo - x1, yo - y1, zo - z1). [(A, B, C)/√(A<sup>2</sup> + B<sup>2</sup> + C<sup>2</sup>)] |
 
= |A(xo - x1) + B(yo - y1) + C(zo - z1)|/√(A<sup>2</sup> + B<sup>2</sup> + C<sup>2</sup>)
 
= | Axo + Byo + Czo - (Ax1 + By1 + Cz1) |/√(A<sup>2</sup> + B<sup>2</sup> + C<sup>2</sup>)
 
= | Axo + Byo + Czo + D |/√(A<sup>2</sup> + B<sup>2</sup> + C<sup>2</sup>) [Because D = - (Ax1 + By1 + Cz1)]
 
चूँकि निर्देशांक (x1, y1, z1) वाला बिंदु Q दिए गए समतल पर एक मनमाना बिंदु है और D = - (Ax1 + By1 + Cz1) है, इसलिए समतल पर किसी भी बिंदु Q के लिए सूत्र समान रहता है और इसलिए, बिंदु Q पर निर्भर नहीं करता है, यानी, बिंदु Q समतल पर जहाँ भी स्थित हो, बिंदु और समतल के बीच की दूरी का सूत्र समान रहता है। इसलिए, बिंदु P(xo, yo, zo) और समतल π: Ax + By + Cz + D = 0 के बीच की दूरी इस प्रकार दी गई है, d = |Axo + Byo + Czo + D |/√(A2 + B2 + C2)
 
बिंदु से समतल तक की दूरी का सूत्र कैसे लागू करें?
 
हमने एक बिंदु से समतल तक की दूरी का सूत्र निकाला है, हम इसके अनुप्रयोग को समझने और बिंदु और समतल के बीच की दूरी निर्धारित करने के लिए सूत्र का उपयोग करके एक उदाहरण हल करेंगे।
 
== Example ==
'''Example:''' Determine the distance between the point P = (1, 2, 5) and the plane π: 3x + 4y + z + 7 = 0
 
'''Solution:''' We know that the formula for distance between point and plane is: d = |Axo + Byo + Czo + D |/√(A<sup>2</sup> + B<sup>2</sup> + C<sup>2</sup>)
 
Here, A = 3, B = 4, C = 1, D = 7, xo = 1, yo = 2, zo = 5
 
Substituting the values in the formula, we have
 
d = |Axo + Byo + Czo + D |/√(A<sup>2</sup> + B<sup>2</sup> + C<sup>2</sup>)
 
= |3 × 1 + 4 × 2 + 1 × 5 + 7|/√(3<sup>2</sup> + 4<sup>2</sup> + 1<sup>2</sup>)
 
= |3 + 8 + 5|/√(9 + 16 + 1)
 
= |16|/√26
 
= 8√26/13 units
 
महत्वपूर्ण नोट्स
 
* बिंदु और समतल के बीच की दूरी का सूत्र: |Axo + Byo + Czo + D |/√(A2 + B2 + C2)
* यदि दिया गया बिंदु दिए गए समतल पर स्थित है, तो बिंदु और समतल के बीच की दूरी शून्य है।
 
[[Category:त्रि-विमीय ज्यामिति]][[Category:गणित]][[Category:कक्षा-12]]
[[Category:त्रि-विमीय ज्यामिति]][[Category:गणित]][[Category:कक्षा-12]]

Revision as of 10:06, 17 December 2024

बिंदु और समतल के बीच की दूरी दिए गए बिंदु से गुजरने वाले समतल पर लंबवत की लंबाई है। दूसरे शब्दों में, हम कह सकते हैं कि बिंदु और समतल के बीच की दूरी दिए गए बिंदु से दिए गए समतल पर गिराए गए सामान्य वेक्टर की लंबाई है। यदि हम निर्देशांक (xo, yo, zo) वाले बिंदु P और समीकरण Ax + By + Cz = D के साथ दिए गए समतल के बीच की दूरी निर्धारित करना चाहते हैं, तो बिंदु P और दिए गए समतल के बीच की दूरी |Axo + Byo+ Czo + D|/√(A2 + B2 + C2) द्वारा दी जाती है।

परिभाषा

बिंदु और समतल के बीच की दूरी बिंदु से दिए गए समतल तक की सबसे छोटी लंबवत दूरी है। सरल शब्दों में, किसी बिंदु से समतल तक की सबसे छोटी दूरी दिए गए बिंदु से दिए गए समतल पर गिराए गए सामान्य वेक्टर के समानांतर लंबवत की लंबाई है। आइए अब बिंदु और समतल के बीच की दूरी का सूत्र देखें।

बिंदु और समतल के बीच की दूरी का सूत्र

बिंदु और समतल के बीच की सबसे छोटी दूरी सामान्य वेक्टर की लंबाई के बराबर होती है जो दिए गए बिंदु से शुरू होकर समतल को छूती है। निर्देशांक (xo, yo, zo) वाले बिंदु P और समीकरण Ax + By + Cz = D वाले दिए गए समतल π पर विचार करें। फिर, बिंदु P और समतल π के बीच की दूरी इस प्रकार दी गई है, |Axo + Byo+ Czo + D|/√(A2 + B2 + C2)।

बिंदु और समतल के बीच की दूरी का प्रमाण

अब जब हम बिंदु और समतल के बीच की दूरी का सूत्र जानते हैं, तो आइए हम त्रि-आयामी ज्यामिति के विभिन्न सूत्रों का उपयोग करके इसका सूत्र निकालें। त्रि-आयामी अंतरिक्ष में निर्देशांक (xo, yo, zo) के साथ एक बिंदु P पर विचार करें, और सामान्य वेक्टर के साथ एक समतल, मान लें v = (A, B, C) और समतल पर निर्देशांक (x1, y1, z1) के साथ बिंदु Q। फिर समतल का समीकरण A(x - x1) + B(y - y1) + C(z - z1) = 0 द्वारा दिया जाता है। इस समीकरण को Ax + By + Cz + (- Ax1 - By1 - Cz1) = 0 ⇒ Ax + By + Cz + D = 0 के रूप में फिर से लिखा जा सकता है, जहाँ D = - (Ax1 + By1 + Cz1) है। इसलिए, हमारे पास है:

समतल का समीकरण: Ax + By + Cz + D = 0

बिंदु P: (xo, yo, zo)

सामान्य सदिश: Ai + Bj + Ck

मान लीजिए कि w, बिंदु P(xo, yo, zo) और Q(x1, y1, z1) को जोड़ने वाला सदिश है। फिर, w = (xo - x1, yo - y1, zo - z1)। अब, इकाई सामान्य सदिश की गणना करें, यानी, 1 के बराबर परिमाण वाला सामान्य सदिश जो सामान्य सदिश v को उसके परिमाण से भाग देकर प्राप्त किया जाता है। इकाई सामान्य सदिश इस प्रकार दिया जाता है,

n = v/||v||

= (A, B, C)/√(A2 + B2 + C2)

अब, बिंदु P और दिए गए समतल के बीच की दूरी इकाई सामान्य सदिश n पर सदिश w के प्रक्षेपण की लंबाई के अलावा और कुछ नहीं है। जैसा कि हम जानते हैं, सदिश n की लंबाई एक के बराबर है, बिंदु P से समतल तक की दूरी सदिश w और n के डॉट उत्पाद का निरपेक्ष मान है, अर्थात,

दूरी, d = |w.n|

= | (xo - x1, yo - y1, zo - z1). [(A, B, C)/√(A2 + B2 + C2)] |

= |A(xo - x1) + B(yo - y1) + C(zo - z1)|/√(A2 + B2 + C2)

= | Axo + Byo + Czo - (Ax1 + By1 + Cz1) |/√(A2 + B2 + C2)

= | Axo + Byo + Czo + D |/√(A2 + B2 + C2) [Because D = - (Ax1 + By1 + Cz1)]

चूँकि निर्देशांक (x1, y1, z1) वाला बिंदु Q दिए गए समतल पर एक मनमाना बिंदु है और D = - (Ax1 + By1 + Cz1) है, इसलिए समतल पर किसी भी बिंदु Q के लिए सूत्र समान रहता है और इसलिए, बिंदु Q पर निर्भर नहीं करता है, यानी, बिंदु Q समतल पर जहाँ भी स्थित हो, बिंदु और समतल के बीच की दूरी का सूत्र समान रहता है। इसलिए, बिंदु P(xo, yo, zo) और समतल π: Ax + By + Cz + D = 0 के बीच की दूरी इस प्रकार दी गई है, d = |Axo + Byo + Czo + D |/√(A2 + B2 + C2)

बिंदु से समतल तक की दूरी का सूत्र कैसे लागू करें?

हमने एक बिंदु से समतल तक की दूरी का सूत्र निकाला है, हम इसके अनुप्रयोग को समझने और बिंदु और समतल के बीच की दूरी निर्धारित करने के लिए सूत्र का उपयोग करके एक उदाहरण हल करेंगे।

Example

Example: Determine the distance between the point P = (1, 2, 5) and the plane π: 3x + 4y + z + 7 = 0

Solution: We know that the formula for distance between point and plane is: d = |Axo + Byo + Czo + D |/√(A2 + B2 + C2)

Here, A = 3, B = 4, C = 1, D = 7, xo = 1, yo = 2, zo = 5

Substituting the values in the formula, we have

d = |Axo + Byo + Czo + D |/√(A2 + B2 + C2)

= |3 × 1 + 4 × 2 + 1 × 5 + 7|/√(32 + 42 + 12)

= |3 + 8 + 5|/√(9 + 16 + 1)

= |16|/√26

= 8√26/13 units

महत्वपूर्ण नोट्स

  • बिंदु और समतल के बीच की दूरी का सूत्र: |Axo + Byo + Czo + D |/√(A2 + B2 + C2)
  • यदि दिया गया बिंदु दिए गए समतल पर स्थित है, तो बिंदु और समतल के बीच की दूरी शून्य है।