त्रिभुज के गुण: Difference between revisions

From Vidyalayawiki

No edit summary
No edit summary
Line 1: Line 1:
Theorem 1: Angles opposite to equal sides of an isosceles triangle are equal
[[File:Isosceles Triangle -1.jpg|alt=Fig 1 - Isosceles triangle|none|thumb|Fig 1 - Isosceles triangle]]
Proof: Consider an isosceles triangle <math>BCA</math> shown in fig 1 where <math>AB=AC</math>.
We need to prove that the angles opposite to the sides <math>AB</math> and <math>AC</math> are equal, that is, <math>\angle ABC = \angle ACB</math>
We first draw a bisector of <math>\angle BAC</math> and name it as <math>AD</math>.
Now in <math>\triangle BAD</math> and <math>\triangle CAD</math> we have,
<math>AB=AC</math>                                                       (Given)
<math>\angle BAD =\angle CAD </math>                                     (By construction)
<math>AD=AD</math>                                                           (Common to both)
Thus,  <math>\triangle BAD \cong \triangle CAD</math>                            (By SAS congruence criterion)
So, <math>\angle ABC =\angle ACB </math>                                    (By CPCT)
Hence proved.
Theorem 2: The sides opposite to equal angles of a triangle are equal.
Proof: In a triangle <math>BCA</math> shown in fig 1, base angles are equal and we need to prove that <math>AB=AC</math> or <math>BCA</math> is an isosceles triangle.
Construct a bisector <math>AD</math> which meets the side <math>BC</math> at right angles.
Now in <math>\triangle BAD</math> and <math>\triangle CAD</math> we have,
<math>\angle BAD =\angle CAD </math>                                        (By construction)
<math>AD=AD</math>                                                      (Common side)
<math>\angle BDA =\angle CDA = 90^\circ </math>                                (By construction)
Thus, <math>\triangle BAD \cong \triangle CAD</math>                                   (By ASA congruence criterion)
So, <math>AB=AC</math>                                            (By CPCT)
Or <math>\triangle BCA</math> is isosceles.


[[Category:त्रिभुज]][[Category:कक्षा-9]][[Category:गणित]]
[[Category:त्रिभुज]][[Category:कक्षा-9]][[Category:गणित]]
Properties of a Triangle

Revision as of 10:04, 18 September 2024

Theorem 1: Angles opposite to equal sides of an isosceles triangle are equal

Fig 1 - Isosceles triangle
Fig 1 - Isosceles triangle

Proof: Consider an isosceles triangle shown in fig 1 where .

We need to prove that the angles opposite to the sides and are equal, that is,

We first draw a bisector of and name it as .

Now in and we have,

                                                      (Given)

                               (By construction)

                                                           (Common to both)

Thus,                             (By SAS congruence criterion)

So,                                     (By CPCT)

Hence proved.


Theorem 2: The sides opposite to equal angles of a triangle are equal.

Proof: In a triangle shown in fig 1, base angles are equal and we need to prove that or is an isosceles triangle.

Construct a bisector which meets the side at right angles.

Now in and we have,

                                       (By construction)

                                                      (Common side)

                                (By construction)

Thus,                                   (By ASA congruence criterion)

So,                                             (By CPCT)

Or is isosceles.