वैद्युतचुंबकीय तरंगों के स्त्रोत: Difference between revisions
Listen
No edit summary |
No edit summary |
||
Line 17: | Line 17: | ||
1. प्रकाश की गति (c): | 1. प्रकाश की गति (c): | ||
एक बहुत तेज़ कार | एक बहुत तेज़ कार ,जो केवल एक सेकंड में 300,000 किलोमीटर की यात्रा कर सकती है,से की जा सकती है। यह प्रकाश की गति की तरह है - सचमुच, बहुत तेज़! हम प्रकाश की गति को दर्शाने के लिए "c" अक्षर का उपयोग करते हैं, जो लगभग 300,000,000 मीटर प्रति सेकंड है। | ||
2. तरंग दैर्ध्य (λ) और आवृत्ति (f): | 2. तरंग दैर्ध्य (λ) और आवृत्ति (f): |
Revision as of 12:37, 25 August 2023
Sources of Electromagnetic waves
विद्युत चुम्बकीय तरंगों के स्रोत:
विद्युत चुम्बकीय तरंगें अंतरिक्ष में ऊर्जा के प्रवाह का एक तरीका है। वे दो मुख्य स्रोतों से आते हैं:
1. त्वरित शुल्क:
जब इलेक्ट्रॉन जैसे आवेशित कण तेज़ या धीमे हो जाते हैं, तो वे विद्युत चुम्बकीय तरंगें बनाते हैं। यह वैसा ही है जैसे जब आप किसी रस्सी को ऊपर-नीचे हिलाते हैं - तो वह गति लहरें पैदा करती है जो रस्सी के साथ-साथ चलती हैं। यही बात आरोपों के साथ भी होती है. इस प्रकार रेडियो और सेल फ़ोन सिग्नल भेजते हैं।
2. परमाणु संक्रमण:
परमाणुओं के अंदर छोटे कण होते हैं जिन्हें इलेक्ट्रॉन कहा जाता है। जब ये इलेक्ट्रॉन एक ऊर्जा स्तर से दूसरे ऊर्जा स्तर पर जाते हैं, तो वे विद्युत चुम्बकीय तरंगें छोड़ते हैं। इसे ऐसे समझें जैसे कोई आतिशबाजी फूट रही हो और रंग-बिरंगी रोशनी दे रही हो। रोशनी और लेजर में यही होता है।
गणितीय समीकरण:
1. प्रकाश की गति (c):
एक बहुत तेज़ कार ,जो केवल एक सेकंड में 300,000 किलोमीटर की यात्रा कर सकती है,से की जा सकती है। यह प्रकाश की गति की तरह है - सचमुच, बहुत तेज़! हम प्रकाश की गति को दर्शाने के लिए "c" अक्षर का उपयोग करते हैं, जो लगभग 300,000,000 मीटर प्रति सेकंड है।
2. तरंग दैर्ध्य (λ) और आवृत्ति (f):
समुद्र में एक लहर के बारे में सोचो. दो तरंग शिखरों के बीच की दूरी तरंग दैर्ध्य (λ) है। एक सेकंड में कितनी तरंगें गुजरती हैं वह आवृत्ति (f) है। जब हम प्रकाश तरंगों के बारे में बात करते हैं, तो हम इन शब्दों का भी उपयोग करते हैं।
प्रकाश की गति, तरंग दैर्ध्य और आवृत्ति को जोड़ने वाला समीकरण है:
c = λf
3. प्रकाश की ऊर्जा (E):
जैसे ट्रैंपोलिन पर कूदने में ऊर्जा लगती है, वैसे ही प्रकाश बनाने में भी ऊर्जा लगती है। प्रकाश छोटे-छोटे पैकेटों में आता है जिन्हें फोटॉन कहते हैं। किसी फोटॉन की ऊर्जा उसकी आवृत्ति पर निर्भर करती है। ट्रैम्पोलिन पर ऊंची छलांग के रूप में उच्च ऊर्जा की कल्पना करें!
फोटॉन ऊर्जा का समीकरण है:
E = hf
जहाँ:
h एक विशेष संख्या है जिसे प्लैंक स्थिरांक कहा जाता है (यह वास्तव में छोटा है, जैसे 0.0000000000000000000006626)
यह सब एक साथ डालें:
इसलिए, जब आवेशित कणों की गति तेज हो जाती है (जैसे एंटेना में) या परमाणुओं में इलेक्ट्रॉन ऊर्जा के स्तर को बढ़ा देते हैं (जैसे रोशनी में), तो वे विद्युत चुम्बकीय तरंगें बनाते हैं। ये तरंगें प्रकाश की गति से चलती हैं और इन्हें उपयोग करके वर्णित किया जा सकता है ।