कोणीय आवर्धन: Difference between revisions

From Vidyalayawiki

Listen

Line 4: Line 4:


== उदाहरण के लिए ==
== उदाहरण के लिए ==
आइए दूरबीनों के बारे में बात करें। जब आप दूरबीन से देखते हैं, तो आप दूर की वस्तुओं को अधिक स्पष्ट और अधिक विस्तार से देख पाते हैं। कोणीय आवर्धन इस वृद्धि को मापने में मदद करता है।
 
====== दूरबीनों के बारे में ======
जब आप दूरबीन से देखते हैं, तो आप दूर की वस्तुओं को अधिक स्पष्ट और अधिक विस्तार से देख पाते हैं। कोणीय आवर्धन इस वृद्धि को मापने में मदद करता है।


== कोणीय आवर्धन (M) का सूत्र ==
== कोणीय आवर्धन (M) का सूत्र ==

Revision as of 08:18, 27 August 2023

Angular Magnification

कोणीय आवर्धन एक अवधारणा है जो हमें यह समझने में मदद करती है कि माइक्रोस्कोप या दूरबीन जैसे ऑप्टिकल उपकरण के माध्यम से देखने पर कोई वस्तु कितनी बड़ी या छोटी दिखाई देती है। यह सब इस बारे में है कि कोई वस्तु कितनी "ज़ूम इन" या "ज़ूम आउट" लगती है।

उदाहरण के लिए

दूरबीनों के बारे में

जब आप दूरबीन से देखते हैं, तो आप दूर की वस्तुओं को अधिक स्पष्ट और अधिक विस्तार से देख पाते हैं। कोणीय आवर्धन इस वृद्धि को मापने में मदद करता है।

कोणीय आवर्धन (M) का सूत्र

M = θ' / θ

जहाँ:

   M कोणीय आवर्धन है

   θ' दूरबीन द्वारा बनी छवि द्वारा बनाया गया कोण है (छवि कितनी बड़ी दिखाई देती है)

   θ दूरबीन के बिना देखी गई वस्तु द्वारा बनाया गया कोण है (नग्न आंखों को वस्तु कितनी बड़ी दिखाई देती है)

यदि कोणीय आवर्धन 1 (म > 1) से अधिक है, तो इसका मतलब है कि उपकरण के माध्यम से देखने पर वस्तु बड़ी दिखाई देती है। यह आमतौर पर सूक्ष्मदर्शी के मामले में होता है, जहां आप विस्तृत अवलोकन के लिए छोटी वस्तुओं को बड़ा करना चाहते हैं। यदि कोणीय आवर्धन 1 (M<1) से कम है, तो उपकरण से देखने पर वस्तु छोटी दिखाई देती है। उदाहरण के लिए, टेलीस्कोप अक्सर दूर की वस्तुओं को छोटा दिखाते हैं ताकि उन्हें अधिक आसानी से देखा जा सके।

ध्यान रखने योग्य महत्वपूर्ण बिंदु

कोणीय आवर्धन वास्तव में वस्तु के भौतिक आकार को नहीं बदलता है। यह सब इस बारे में है कि वस्तु नग्न आंखों की तुलना में कितनी बड़ी या छोटी दिखाई देती है।

सरल शब्दों में

कोणीय आवर्धन आपको बताता है कि दूरबीन या माइक्रोस्कोप जैसा ऑप्टिकल उपकरण किसी वस्तु को कितना बड़ा या छोटा दिखाता है। इसकी गणना वस्तु और उसकी छवि द्वारा बनाए गए कोणों की तुलना करके की जाती है, और यह वस्तु के वास्तविक आकार को नहीं बदलता है।