अवतल दर्पण: Difference between revisions
Listen
No edit summary |
|||
Line 37: | Line 37: | ||
ऋणात्मक चिन्ह दर्शाता है कि अवतल दर्पण द्वारा बनी छवि उलटी है। | ऋणात्मक चिन्ह दर्शाता है कि अवतल दर्पण द्वारा बनी छवि उलटी है। | ||
संक्षेप में अवतल दर्पण घुमावदार दर्पण होते हैं जो वास्तविक या आभासी छवियां बनाने के लिए प्रकाश किरणों को परिवर्तित कर सकते हैं। दर्पण समीकरण और आवर्धन सूत्र हमें भविष्यवाणी करने और समझने की अनुमति देते हैं कि जब प्रकाश अवतल दर्पण से परावर्तित होता है तो वह कैसा व्यवहार करता है। | == संक्षेप में == | ||
अवतल दर्पण घुमावदार दर्पण होते हैं जो वास्तविक या आभासी छवियां बनाने के लिए प्रकाश किरणों को परिवर्तित कर सकते हैं। दर्पण समीकरण और आवर्धन सूत्र हमें भविष्यवाणी करने और समझने की अनुमति देते हैं कि जब प्रकाश अवतल दर्पण से परावर्तित होता है तो वह कैसा व्यवहार करता है। | |||
[[Category:किरण प्रकाशिकी एवं प्रकाशिक यंत्र]][[Category:कक्षा-12]][[Category:भौतिक विज्ञान]] | [[Category:किरण प्रकाशिकी एवं प्रकाशिक यंत्र]][[Category:कक्षा-12]][[Category:भौतिक विज्ञान]] |
Revision as of 16:49, 28 August 2023
Concave Mirror
अवतल दर्पण प्रकाशिकी के क्षेत्र में एक आवश्यक घटक हैं और इसका उपयोग विभिन्न ऑप्टिकल उपकरणों जैसे दूरबीन, सूक्ष्मदर्शी और यहां तक कि मेकअप दर्पण में भी किया जाता है। आइए देखें कि अवतल दर्पण क्या हैं, वे कैसे काम करते हैं, और वे समीकरण जो उनके व्यवहार का वर्णन करते हैं।
अवतल दर्पण
अवतल दर्पण एक घुमावदार दर्पण होता है जहां परावर्तक सतह चम्मच के अंदर की तरह अंदर की ओर मुड़ी होती है। यह ध्यान रखना महत्वपूर्ण है कि दर्पण की वक्रता के केंद्र को वक्रता केंद्र (C) कहा जाता है, और दर्पण की परावर्तक सतह के मध्य बिंदु को शीर्ष (V) के रूप में जाना जाता है। शीर्ष से वक्रता केंद्र तक की दूरी को वक्रता त्रिज्या (R) कहा जाता है।
अवतल दर्पण व्यवहार
अवतल दर्पण प्रकाश किरणों को अभिसरित करने की अपनी क्षमता के लिए जाने जाते हैं। इसका मतलब यह है कि प्रकाश की समानांतर किरणें जो अवतल दर्पण से टकराती हैं, वे इस तरह से परावर्तित होंगी कि वे सभी एक ही बिंदु पर मिलती हैं जिसे फोकस (एफ) कहा जाता है। यह फोकस बिंदु दर्पण के मुख्य अक्ष के अनुदिश स्थित होता है।
अवतल दर्पण के लिए समीकरण
अवतल दर्पण के व्यवहार को दर्पण समीकरण का उपयोग करके वर्णित किया जा सकता है, जो वस्तु दूरी (u), छवि दूरी (v), और दर्पण की फोकल लंबाई (f) से संबंधित है:
जहाँ:
- अवतल दर्पण की फोकल लंबाई है (अवतल दर्पण के लिए सकारात्मक)।
- छवि की दूरी है, जिसे दर्पण की सतह से उस बिंदु तक मापा जाता है जहां परावर्तित किरणें एकत्रित होती हैं (वास्तविक छवियों के लिए सकारात्मक)।
- वस्तु की दूरी है, जो दर्पण की सतह से परावर्तित वस्तु तक मापी जाती है (आपतित प्रकाश के समान तरफ की वास्त विक वस्तुओं के लिए सकारात्मक)।
छवि निर्माण
- यदि वस्तु को फोकस (u>f) से परे रखा जाता है, तो फोकस और दर्पण के बीच एक वास्तविक और उलटी छवि बनती है।
- यदि वस्तु को फोकल लंबाई (u=2f) से दोगुनी दूरी पर रखा जाता है, तो फोकस पर एक वास्तविक और उलटी छवि बनती है।
- यदि वस्तु को फोकस और दर्पण (f<u<2f) के बीच रखा जाता है, तो वस्तु की एक ही तरफ एक आभासी और सीधी छवि बनती है।
आवर्धन:
अवतल दर्पण द्वारा उत्पन्न आवर्धन (मिमी) छवि ऊंचाई (hi) और वस्तु की ऊंचाई (ho) के अनुपात द्वारा दिया जाता है:
ऋणात्मक चिन्ह दर्शाता है कि अवतल दर्पण द्वारा बनी छवि उलटी है।
संक्षेप में
अवतल दर्पण घुमावदार दर्पण होते हैं जो वास्तविक या आभासी छवियां बनाने के लिए प्रकाश किरणों को परिवर्तित कर सकते हैं। दर्पण समीकरण और आवर्धन सूत्र हमें भविष्यवाणी करने और समझने की अनुमति देते हैं कि जब प्रकाश अवतल दर्पण से परावर्तित होता है तो वह कैसा व्यवहार करता है।