समांतर माध्य: Difference between revisions

From Vidyalayawiki

No edit summary
No edit summary
Line 5: Line 5:
=== <u>केंद्रीय प्रवृत्ति की माप</u> ===
=== <u>केंद्रीय प्रवृत्ति की माप</u> ===
किसी आंकड़ों के समूह अर्थात data set का वह अंक value जो कि उसके मध्य में स्थित होता है , तथा पूर्ण आंकड़ों data set  की लक्षणों का प्रतिनिधित्व ( representation) करता है उसे हम केंद्रीय प्रवृत्ति की माप कहते हैं, सरल शब्दों में समझे तो इस केंद्रीय प्रवृत्ति की माप ( central tendency) से हमें  आंकड़ों के समूह का पूर्ण ज्ञान हो जाता है | केंद्रीय प्रवृत्ति की माप आंकड़ों को संक्षिप्त रूप से व्यक्त करने की संख्यात्मक  ( mathematical)  विधि है।
किसी आंकड़ों के समूह अर्थात data set का वह अंक value जो कि उसके मध्य में स्थित होता है , तथा पूर्ण आंकड़ों data set  की लक्षणों का प्रतिनिधित्व ( representation) करता है उसे हम केंद्रीय प्रवृत्ति की माप कहते हैं, सरल शब्दों में समझे तो इस केंद्रीय प्रवृत्ति की माप ( central tendency) से हमें  आंकड़ों के समूह का पूर्ण ज्ञान हो जाता है | केंद्रीय प्रवृत्ति की माप आंकड़ों को संक्षिप्त रूप से व्यक्त करने की संख्यात्मक  ( mathematical)  विधि है।
केंद्रीय प्रवृत्ति की माप मुख्ता तीन प्रकार की होती है- 1. समांतर माध्य
2. माध्यिका
3.  बहुलक
आई अब हम जानते हैं समांतर माध्य के बारे में |
== समांतर माध्य ==
अंकगणितीय माध्य एक संख्या का प्रतिनिधित्व करता है जो किसी सेट के तत्वों के योग  ( sum of values of data) को सेट में मानों की संख्या ( number of values) से विभाजित करके प्राप्त किया जाता है। अंकगणितीय माध्य को आमतौर पर औसत के रूप में जाना जाता है। किसी दिए गए संख्याओं के समूह के औसत को अंकगणितीय माध्य कहा जाता है, या बस, दी गई संख्याओं का माध्य कहा जाता है।
=== <u>समांतर माध्य का उपयोग</u> ===
इसे हम कुछ उदाहरणों से समझ सकते हैं, यदि किसी परिवार  में दो व्यक्ति हैं, जिसमें से पहले व्यक्ति ₹10000 कमाता है तथा दूसरा व्यक्ति ₹4000 कमाता है ,तो उनका औसत वेतनमान क्या होगा ?  इस औसत को 10,000 रुपये और 40,00 रुपये का  माध्य भी कहा जाता है, जिसकी गणना इन दोनों वेतनों को जोड़कर और फिर 2 से विभाजित करके की जाती है।
औसत वेतन (वेतन का  माध्य) = (10000 + 4000)/2 
=₹7000.
अतः हमें पता चला कि उसे परिवार का औसत वेतनमान ₹7000 है ।
इस प्रकार, अंकगणितीय माध्य का उपयोग विभिन्न परिदृश्यों में किया जाता है, जैसे कि छात्रों द्वारा प्राप्त अंकों का औसत, किसी क्षेत्र में औसत वर्षा आदि का पता आसानी से पता सकते हैं ।
=== <u>समांतर माध्य का सूत्र</u> ===
माध्य = (अवलोकनों का योग)/(अवलोकनों की संख्या)
[[File:समांतर माध्य का सूत्र.jpg|alt=समांतर माध्य का सूत्र|center|thumb|889x889px|समांतर माध्य का सूत्र]]






[[Category:गणित]][[Category:कक्षा-10]]
[[Category:गणित]][[Category:कक्षा-10]]

Revision as of 15:23, 3 September 2023

समांतर माध्य शुरू करने के पूर्व आइए हम जानते हैं कि केंद्रीय प्रवृत्ति की माप से क्या तात्पर्य है ?

केंद्रीय प्रवृत्ति की माप

किसी आंकड़ों के समूह अर्थात data set का वह अंक value जो कि उसके मध्य में स्थित होता है , तथा पूर्ण आंकड़ों data set की लक्षणों का प्रतिनिधित्व ( representation) करता है उसे हम केंद्रीय प्रवृत्ति की माप कहते हैं, सरल शब्दों में समझे तो इस केंद्रीय प्रवृत्ति की माप ( central tendency) से हमें आंकड़ों के समूह का पूर्ण ज्ञान हो जाता है | केंद्रीय प्रवृत्ति की माप आंकड़ों को संक्षिप्त रूप से व्यक्त करने की संख्यात्मक ( mathematical) विधि है।

केंद्रीय प्रवृत्ति की माप मुख्ता तीन प्रकार की होती है- 1. समांतर माध्य

2. माध्यिका

3. बहुलक

आई अब हम जानते हैं समांतर माध्य के बारे में |

समांतर माध्य

अंकगणितीय माध्य एक संख्या का प्रतिनिधित्व करता है जो किसी सेट के तत्वों के योग ( sum of values of data) को सेट में मानों की संख्या ( number of values) से विभाजित करके प्राप्त किया जाता है। अंकगणितीय माध्य को आमतौर पर औसत के रूप में जाना जाता है। किसी दिए गए संख्याओं के समूह के औसत को अंकगणितीय माध्य कहा जाता है, या बस, दी गई संख्याओं का माध्य कहा जाता है।

समांतर माध्य का उपयोग

इसे हम कुछ उदाहरणों से समझ सकते हैं, यदि किसी परिवार में दो व्यक्ति हैं, जिसमें से पहले व्यक्ति ₹10000 कमाता है तथा दूसरा व्यक्ति ₹4000 कमाता है ,तो उनका औसत वेतनमान क्या होगा ? इस औसत को 10,000 रुपये और 40,00 रुपये का माध्य भी कहा जाता है, जिसकी गणना इन दोनों वेतनों को जोड़कर और फिर 2 से विभाजित करके की जाती है। औसत वेतन (वेतन का माध्य) = (10000 + 4000)/2 =₹7000. अतः हमें पता चला कि उसे परिवार का औसत वेतनमान ₹7000 है । इस प्रकार, अंकगणितीय माध्य का उपयोग विभिन्न परिदृश्यों में किया जाता है, जैसे कि छात्रों द्वारा प्राप्त अंकों का औसत, किसी क्षेत्र में औसत वर्षा आदि का पता आसानी से पता सकते हैं ।

समांतर माध्य का सूत्र

माध्य = (अवलोकनों का योग)/(अवलोकनों की संख्या)

समांतर माध्य का सूत्र
समांतर माध्य का सूत्र