अंकगणित की आधारभूत प्रमेय: Difference between revisions
Ramamurthy (talk | contribs) (Underline for the sub-heading removed) |
(→उदाहरण) |
||
Line 1: | Line 1: | ||
[[Category:वास्तविक संख्याएँ]] | [[Category:वास्तविक संख्याएँ]] | ||
अंकगणित गणित की मुख्य शाखाओं में से एक है, जो संख्याओं और अक्षरों से संबंधित है । यह शाखा गणित का आधार है जिसके माध्यम से हम कठिन प्रश्नों को हल कर सकते हैं । दैनिक जीवन में अंकगणित का उपयोग जोड़, घटाव, गुणा ,भाग, अंश और दशमलव जैसे विभिन्न कार्यों | अंकगणित गणित की मुख्य शाखाओं में से एक है, जो संख्याओं और अक्षरों से संबंधित है । यह शाखा गणित का आधार है जिसके माध्यम से हम कठिन प्रश्नों को हल कर सकते हैं । दैनिक जीवन में अंकगणित का उपयोग जोड़, घटाव, गुणा ,भाग, अंश और दशमलव जैसे विभिन्न कार्यों मे होता है। आइए , इस इकाई की शुरुआत भाज्य और अभाज्य संख्याओं को समझ कर करते हैं। | ||
== अभाज्य और भाज्य संख्याएँ == | == अभाज्य और भाज्य संख्याएँ == | ||
=== अभाज्य संख्याएँ === | === अभाज्य संख्याएँ === | ||
Line 13: | Line 14: | ||
=== <u>भाज्य संख्याएँ</u> === | === <u>भाज्य संख्याएँ</u> === | ||
Line 38: | Line 40: | ||
1. संख्या 350 को उनके अभाज्य गुणनखंडो के रूप में व्यक्त कीजिए । | 1. संख्या 350 को उनके अभाज्य गुणनखंडो के रूप में व्यक्त कीजिए । | ||
हल – 350 के अभाज्य गुणनखंड = 2 | हल – 350 के अभाज्य गुणनखंड = 2 ×5 ×5 ×7 | ||
2. संख्या 3045 को उनके अभाज्य गुणनखंडो के रूप में व्यक्त कीजिए । | 2. संख्या 3045 को उनके अभाज्य गुणनखंडो के रूप में व्यक्त कीजिए । | ||
Line 52: | Line 54: | ||
निम्नलिखित धनात्मक पूर्णांकों में से प्रत्येक को अभाज्य गुणनखंड विधि द्वारा उसके अभाज्य गुणनखंडों के गुणनफल के रूप में व्यक्त करें। | निम्नलिखित धनात्मक पूर्णांकों में से प्रत्येक को अभाज्य गुणनखंड विधि द्वारा उसके अभाज्य गुणनखंडों के गुणनफल के रूप में व्यक्त करें। | ||
a.156 | a.156 = 2 x 78 = 2 x 2 x 39 = 2 x 2 x 3 x 13 | ||
उत्तर- 156 = 2 x 2 x 3 x 13 | उत्तर- 156 = 2 x 2 x 3 x 13 | ||
b. 234 | b. 234 = 2 x 117 =2 x 3 x 39 = 2 x 3 x 3 x 13 | ||
उत्तर- 234 = 2 x 3 x 3 x 13 | उत्तर- 234 = 2 x 3 x 3 x 13 | ||
=== <u>महत्तम समापवर्तक या म. स. ( HCF) | === <u>महत्तम समापवर्तक या म. स. ( HCF) और लघुतम समापवर्तक ल. स. (LCM) ज्ञात करना</u> === | ||
अंकगणित की मौलिक प्रमेय के उपयोग से हम महत्तम समापवर्तक या म.स. और लघुत्तम समापवर्तक या ल.स. ज्ञात कर सकते हैं, आईए इन दोनों को समझते हैं एक उदाहरण के माध्यम से - | अंकगणित की मौलिक प्रमेय के उपयोग से हम महत्तम समापवर्तक या म.स. और लघुत्तम समापवर्तक या ल.स. ज्ञात कर सकते हैं, | ||
लघुत्तम समापवर्तक या ल.स. (lcm)= संख्याओं में शामिल प्रत्येक अभाज्य गुणनखंड की सबसे बड़ी घात का गुणनफल। | |||
महत्तम समापवर्तक या म.स. (hcf)= संख्याओं में प्रत्येक सामान्य अभाज्य गुणनखंड की सबसे छोटी घात का गुणनफल । | |||
आईए इन दोनों को समझते हैं एक उदाहरण के माध्यम से - | |||
=== उदाहरण 2. === | === उदाहरण 2. === | ||
26 और 91 का | 26 और 91 का महत्तम समापवर्तक और लघुत्तम समापवर्तक ज्ञात करें, और सिद्ध करें कि - '''HCF × LCM = दो संख्याओं का गुणनफल।''' | ||
उत्तर- अभाज्य गुणनखंडन द्वारा, | उत्तर- अभाज्य गुणनखंडन द्वारा, | ||
Line 72: | Line 80: | ||
91 = 7 x 13 | 91 = 7 x 13 | ||
महत्तम समापवर्तक HCF (26, 91) = 13 | महत्तम समापवर्तक HCF (26, 91) = 13 | ||
लघुत्तम समापवर्तक LCM (26, 91) = 13 x 2 x 7= 182 | लघुत्तम समापवर्तक LCM (26, 91) = 13 x 2 x 7= 182 | ||
HCF × LCM = 13 × 182 = 2366 | HCF × LCM = 13 × 182 = 2366 | ||
दो संख्याओं का गुणनफल = 26 × 91 = 2366 | दो संख्याओं का गुणनफल = 26 × 91 = 2366 |
Revision as of 11:27, 10 September 2023
अंकगणित गणित की मुख्य शाखाओं में से एक है, जो संख्याओं और अक्षरों से संबंधित है । यह शाखा गणित का आधार है जिसके माध्यम से हम कठिन प्रश्नों को हल कर सकते हैं । दैनिक जीवन में अंकगणित का उपयोग जोड़, घटाव, गुणा ,भाग, अंश और दशमलव जैसे विभिन्न कार्यों मे होता है। आइए , इस इकाई की शुरुआत भाज्य और अभाज्य संख्याओं को समझ कर करते हैं।
अभाज्य और भाज्य संख्याएँ
अभाज्य संख्याएँ
वे संख्याएँ जिनमें केवल दो गुणनखंड होते हैं अर्थात् एक (1) और वे स्वयं ( number itself) , वे संख्याएँ अभाज्य संख्याएँ कहलाती हैं ।
उदाहरण - 3, 5, 7,11 आदि ।
भाज्य संख्याएँ
वे संख्याएं जिनमें दो से ज्यादा गुणनखंड होते हैं, वह संख्याएँ भाज्य संख्याएँ कहलाती हैं ।
उदाहरण - 4,9,12,15 आदि ।
अंकगणित की मौलिक प्रमेय का कथन
"अंकगणित के मौलिक प्रमेय में कहा गया है कि 1 से बड़ा प्रत्येक पूर्णांक या तो एक अभाज्य संख्या (prime number) है या इसे अभाज्य संख्या के रूप में व्यक्त किया जा सकता है। दूसरे शब्दों में, सभी प्राकृत संख्याओं (natural number) को उसके अभाज्य गुणनखंडों (prime number) के गुणनफल के रूप में व्यक्त किया जा सकता है । "
एक मिश्रित संख्या (composite number) को अभाज्य संख्या (prime number) के गुणनफल के रूप में व्यक्त किया जाता है , इस प्रमेय से हम यह भी देख सकते हैं कि न केवल एक भाज्य संख्या को उनके अभाज्य संख्याओं के गुणनफल के रूप में गुणनखंडित किया जा सकता है, बल्कि प्रत्येक भाज्य संख्या के लिए गुणनखंडन विशिष्ट (unique) अर्थात अलग होता है।
सामान्यतः एक भाज्य संख्या "C" को इस प्रकार व्यक्त किया जा सकता है, C = p1 p2 p3 ………… pn,
जहां p1, p2, p3 ………… pn आरोही क्रम ( ascending order) में लिखे गए अभाज्य गुणनखंड (prime factors) हैं , ( p1≤p2≤p3 ………… ≤ pn)
अभाज्य संख्याओं को आरोही क्रम में लिखने से गुणनखंडन प्रकृति में विशिष्ट (unique) हो जाता है।
हम किसी भी संख्या को विशिष्ट रूप से अभाज्य संख्याओं के गुणनफल में विघटित कर सकते हैं।
उदाहरण
1. संख्या 350 को उनके अभाज्य गुणनखंडो के रूप में व्यक्त कीजिए ।
हल – 350 के अभाज्य गुणनखंड = 2 ×5 ×5 ×7
2. संख्या 3045 को उनके अभाज्य गुणनखंडो के रूप में व्यक्त कीजिए ।
हल – 3045 के अभाज्य गुणनखंड = 3×5×7×29
अंकगणित की मौलिक प्रमेय का अनुप्रयोग
गुणनखंडन करना
यह प्रमेय महत्वपूर्ण है, क्योंकि यह हमें किसी भी सकारात्मक पूर्णांक को उसके अभाज्य गुणनखंडों में तोड़ने का एक तरीका प्रदान करती है , जो गुणनखंडन और कई अन्य गणितीय और कम्प्यूटेशनल उद्देश्यों के लिए उपयोगी है। यह संख्या सिद्धांत में भी एक महत्वपूर्ण परिणाम है, जो गणित की वह शाखा है जो पूर्णांकों के गुणों ( characteristics) का अध्ययन करती है।
उदाहरण 1.
निम्नलिखित धनात्मक पूर्णांकों में से प्रत्येक को अभाज्य गुणनखंड विधि द्वारा उसके अभाज्य गुणनखंडों के गुणनफल के रूप में व्यक्त करें।
a.156 = 2 x 78 = 2 x 2 x 39 = 2 x 2 x 3 x 13
उत्तर- 156 = 2 x 2 x 3 x 13
b. 234 = 2 x 117 =2 x 3 x 39 = 2 x 3 x 3 x 13
उत्तर- 234 = 2 x 3 x 3 x 13
महत्तम समापवर्तक या म. स. ( HCF) और लघुतम समापवर्तक ल. स. (LCM) ज्ञात करना
अंकगणित की मौलिक प्रमेय के उपयोग से हम महत्तम समापवर्तक या म.स. और लघुत्तम समापवर्तक या ल.स. ज्ञात कर सकते हैं,
लघुत्तम समापवर्तक या ल.स. (lcm)= संख्याओं में शामिल प्रत्येक अभाज्य गुणनखंड की सबसे बड़ी घात का गुणनफल।
महत्तम समापवर्तक या म.स. (hcf)= संख्याओं में प्रत्येक सामान्य अभाज्य गुणनखंड की सबसे छोटी घात का गुणनफल ।
आईए इन दोनों को समझते हैं एक उदाहरण के माध्यम से -
उदाहरण 2.
26 और 91 का महत्तम समापवर्तक और लघुत्तम समापवर्तक ज्ञात करें, और सिद्ध करें कि - HCF × LCM = दो संख्याओं का गुणनफल।
उत्तर- अभाज्य गुणनखंडन द्वारा,
26 = 2 x 13
91 = 7 x 13
महत्तम समापवर्तक HCF (26, 91) = 13
लघुत्तम समापवर्तक LCM (26, 91) = 13 x 2 x 7= 182
HCF × LCM = 13 × 182 = 2366
दो संख्याओं का गुणनफल = 26 × 91 = 2366
इसलिए, HCF × LCM = दो संख्याओं का गुणनफल