गुरत्वजनित त्वरण: Difference between revisions

From Vidyalayawiki

Listen

No edit summary
Line 7: Line 7:


  <math>F = G \frac{m_1 m_2}{r^2}</math>
  <math>F = G \frac{m_1 m_2}{r^2}</math>
 
[[File:Orbit3.gif|thumb|द्रव्यमान में बड़े अंतर वाले दो पिंड वृत्ताकार कक्षाओं के साथ एक सामान्य बैरीसेंटर (रेड क्रॉस) के चारों ओर परिक्रमा करते हैं ]]
जहाँ <math>m_1</math>और <math>m_2</math> कोई दो द्रव्यमान हैं, <math>G</math> गुरुत्वाकर्षण स्थिरांक है, और <math>r</math> दो बिंदु-सदृश द्रव्यमानों के बीच की दूरी है।
जहाँ <math>m_1</math>और <math>m_2</math> कोई दो द्रव्यमान हैं, <math>G</math> गुरुत्वाकर्षण स्थिरांक है, और <math>r</math> दो बिंदु-सदृश द्रव्यमानों के बीच की दूरी है।
दो पिंड अपने द्रव्यमान केंद्र की परिक्रमा कर रहे हैं (रेड क्रॉस)


गॉस के नियम के अभिन्न रूप का उपयोग करते हुए, इस सूत्र को वस्तुओं के किसी भी जोड़े तक बढ़ाया जा सकता है, जिनमें से एक दूसरे की तुलना में कहीं अधिक विशाल है - जैसे कि किसी भी मानव-पैमाने की कलाकृति के सापेक्ष एक ग्रह। ग्रहों के बीच तथा ग्रहों और सूर्य के बीच की दूरियाँ (परिमाण के कई क्रमों के अनुसार) सूर्य और ग्रहों के आकार से बड़ी हैं। परिणामस्वरूप, सूर्य और ग्रहों दोनों को बिंदु द्रव्यमान माना जा सकता है और ग्रहों की गति पर भी यही सूत्र लागू किया जा सकता है। (चूंकि ग्रह और प्राकृतिक उपग्रह तुलनीय द्रव्यमान के जोड़े बनाते हैं, इसलिए दूरी 'आर' को ग्रह केंद्रों के बीच की सीधी कुल दूरी के बजाय प्रत्येक जोड़े के सामान्य द्रव्यमान केंद्रों से मापा जाता है।)
गॉस के नियम के अभिन्न रूप का उपयोग करते हुए, इस सूत्र को वस्तुओं के किसी भी जोड़े तक बढ़ाया जा सकता है, जिनमें से एक दूसरे की तुलना में कहीं अधिक विशाल है - जैसे कि किसी भी मानव-पैमाने की कलाकृति के सापेक्ष एक ग्रह। ग्रहों के बीच तथा ग्रहों और सूर्य के बीच की दूरियाँ (परिमाण के कई क्रमों के अनुसार) सूर्य और ग्रहों के आकार से बड़ी हैं। परिणामस्वरूप, सूर्य और ग्रहों दोनों को बिंदु द्रव्यमान माना जा सकता है और ग्रहों की गति पर भी यही सूत्र लागू किया जा सकता है। (चूंकि ग्रह और प्राकृतिक उपग्रह तुलनीय द्रव्यमान के जोड़े बनाते हैं, इसलिए दूरी 'आर' को ग्रह केंद्रों के बीच की सीधी कुल दूरी के बजाय प्रत्येक जोड़े के सामान्य द्रव्यमान केंद्रों से मापा जाता है।)

Revision as of 15:01, 5 January 2024

Acceleration due to gravity

गुरत्वजनित त्वरण, जिसे प्रायः "जी:g" के रूप में दर्शाया जाता है, पृथ्वी जैसे आकाशीय पिंड की सतह के पास स्वतंत्र गिरावट में वस्तुओं द्वारा अनुभव किया जाने वाला एक निरंतर त्वरण है। यह उस दर का प्रतिनिधित्व करता है, जिस पर आकाशीय पिंड द्वारा लगाए गए गुरुत्वाकर्षण बल के कारण किसी वस्तु का वेग बदल जाता है।

सार्वभौमिक नियम से संबंध

न्यूटन के सार्वभौमिक गुरुत्वाकर्षण के नियम में कहा गया है कि किन्हीं दो द्रव्यमानों के बीच एक गुरुत्वाकर्षण बल होता है, जो प्रत्येक द्रव्यमान के लिए परिमाण में बराबर होता है, और दोनों द्रव्यमानों को एक-दूसरे की ओर खींचने के लिए संरेखित होता है। सूत्र है:

  

द्रव्यमान में बड़े अंतर वाले दो पिंड वृत्ताकार कक्षाओं के साथ एक सामान्य बैरीसेंटर (रेड क्रॉस) के चारों ओर परिक्रमा करते हैं

जहाँ और कोई दो द्रव्यमान हैं, गुरुत्वाकर्षण स्थिरांक है, और दो बिंदु-सदृश द्रव्यमानों के बीच की दूरी है।

गॉस के नियम के अभिन्न रूप का उपयोग करते हुए, इस सूत्र को वस्तुओं के किसी भी जोड़े तक बढ़ाया जा सकता है, जिनमें से एक दूसरे की तुलना में कहीं अधिक विशाल है - जैसे कि किसी भी मानव-पैमाने की कलाकृति के सापेक्ष एक ग्रह। ग्रहों के बीच तथा ग्रहों और सूर्य के बीच की दूरियाँ (परिमाण के कई क्रमों के अनुसार) सूर्य और ग्रहों के आकार से बड़ी हैं। परिणामस्वरूप, सूर्य और ग्रहों दोनों को बिंदु द्रव्यमान माना जा सकता है और ग्रहों की गति पर भी यही सूत्र लागू किया जा सकता है। (चूंकि ग्रह और प्राकृतिक उपग्रह तुलनीय द्रव्यमान के जोड़े बनाते हैं, इसलिए दूरी 'आर' को ग्रह केंद्रों के बीच की सीधी कुल दूरी के बजाय प्रत्येक जोड़े के सामान्य द्रव्यमान केंद्रों से मापा जाता है।)

पृथ्वी की सतह पर, गुरत्वजनित त्वरण का मानक औसत मान लगभग 9.8 मीटर प्रति सेकंड वर्ग (m/s²) है। इसका तात्पर्य यह है कि, वायु प्रतिरोध की अनुपस्थिति में, पृथ्वी की सतह के पास एक वस्तु प्रति सेकेंड नीचे की ओर 9.8 मीटर/से² के वेग में बदलाव का अनुभव करेगी।

यह ध्यान रखना महत्वपूर्ण है कि गुरत्वजनित त्वरण का मान पृथ्वी की सतह पर स्थान और समुद्र तल से ऊंचाई के आधार पर थोड़ा भिन्न हो सकता है। इसके अतिरिक्त, पृथ्वी के घूर्णन और स्थानीय गुरुत्वाकर्षण विसंगतियों जैसे कारक जी के मान में मामूली बदलाव कर सकते हैं।

उल्लेखनीय है कि गुरत्वजनित त्वरण का मान अन्य खगोलीय पिंडों पर भिन्न हो सकता है। उदाहरण के लिए, चंद्रमा पर, गुरत्वजनित त्वरण पृथ्वी पर मान का लगभग 1/6 है, जबकि मंगल पर, यह पृथ्वी के मान का लगभग 1/3 है।