व्युत्क्रमणीय आव्यूह: Difference between revisions

From Vidyalayawiki

(New Mathematics Class 12 Hindi Page Created)
No edit summary
Line 2: Line 2:


== परिभाषा ==
== परिभाषा ==
<math>A=\begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}</math>  <math>B=\begin{bmatrix} 5 & -2 \\ -2 & 1 \end{bmatrix}</math><math>A=\begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}</math>
Now we multiply <math>A</math> with <math>B</math> and obtain an identity matrix:
<math>AB=\begin{bmatrix} 1 \times 5 + 2 \times -2 & 1 \times -2+2 \times 1 \\ 2 \times 5 + 5 \times -2 & 2 \times -2+5 \times 1  \end{bmatrix}=\begin{bmatrix} 5-4  & -2+2 \\ 10 -10 & -4+5 \end{bmatrix}=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}</math>
Similarly, on multiplying B with A, we obtain the same identity matrix:
<math>BA=\begin{bmatrix} 5 \times 1+ -2 \times 2 & 5\times 2+ -2 \times 5 \\  -2 \times 1 + 1 \times 2 & 2 \times -2+1 \times 5  \end{bmatrix}=\begin{bmatrix} 5-4  & 10-10 \\ -2+2 & -4+5 \end{bmatrix}=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}</math>
We can that <math>AB=BA=I</math>
Hence <math>A^{-1}=B</math> and <math>B</math> is known as the inverse of <math>A</math>
<math>B^{-1}=A</math> and <math>A</math> can also be called an inverse of <math>B</math>
[[Category:आव्यूह]][[Category:गणित]][[Category:कक्षा-12]]
[[Category:आव्यूह]][[Category:गणित]][[Category:कक्षा-12]]

Revision as of 08:34, 9 January 2024

रैखिक बीजगणित में, एक वर्ग आव्यूह को व्युत्क्रमणीय कहा जाता है, यदि आव्यूह और उसके व्युत्क्रम का गुणनफल तत्समक आव्यूह है।

परिभाषा

Now we multiply with and obtain an identity matrix:

Similarly, on multiplying B with A, we obtain the same identity matrix:

We can that

Hence and is known as the inverse of

and can also be called an inverse of