व्युत्क्रमणीय आव्यूह: Difference between revisions
(content added) |
(content added) |
||
Line 38: | Line 38: | ||
इससे सिद्ध होता है कि <math>B=C</math> या <math>B</math> और <math>C</math> समान आव्यूह हैं। | इससे सिद्ध होता है कि <math>B=C</math> या <math>B</math> और <math>C</math> समान आव्यूह हैं। | ||
=== प्रमेय 1 === | |||
यदि <math>A</math> और <math>B</math> एक ही क्रम के आव्यूह हैं और व्युत्क्रमणीय हैं, तो <math>(AB)^{-1}=B^{-1}A^{-1}</math> | |||
[[Category:आव्यूह]][[Category:गणित]][[Category:कक्षा-12]] | [[Category:आव्यूह]][[Category:गणित]][[Category:कक्षा-12]] |
Revision as of 10:57, 12 January 2024
रैखिक बीजगणित में, एक वर्ग आव्यूह को व्युत्क्रमणीय कहा जाता है, यदि आव्यूह और उसके व्युत्क्रम का गुणनफल तत्समक आव्यूह है।
परिभाषा
आयाम के एक आव्यूह को व्युत्क्रमणीय कहा जाता है, यदि और केवल तभी जब उसी आयाम का एक और आव्यूह उपस्थित हो, जैसे कि , जहां उसी क्रम का पहचान आव्यूह है। आव्यूह को आव्यूह के व्युत्क्रम के रूप में जाना जाता है। आव्यूह का व्युत्क्रम प्रतीकात्मक रूप से द्वारा दर्शाया जाता है। एक व्युत्क्रमणीय आव्यूह को अनव्युत्क्रमणीय(गैर-अव्युत्क्रमणीय) आव्यूह या अनपभ्रष्ट(गैर-डीजनरेटेड)आव्यूह के रूप में भी जाना जाता है।
उदाहरण के लिए, आव्यूह और नीचे दिए गए हैं:
अब हम के साथ को गुणा करते हैं और एक तत्समक आव्यूह प्राप्त करते हैं:
इसी प्रकार, को से गुणा करने पर, हमें समान तत्समक आव्यूह प्राप्त होता है:
हम देख सकते हैं कि
अत: और को के व्युत्क्रम के रूप में जाना जाता है
और को का व्युत्क्रम भी कहा जा सकता है
व्युत्क्रमणीय आव्यूह प्रमेय
प्रमेय 1
यदि किसी वर्ग आव्यूह का व्युत्क्रम उपस्थित है, तो वह सदैव अद्वितीय होता है।
प्रमाण:
मान लीजिए , कोटि का एक वर्ग आव्यूह है। मान लीजिए आव्यूह और , आव्यूह के व्युत्क्रम हैं।
अब चूँकि आव्यूह का व्युत्क्रम है।
इसी प्रकार,
परंतु
इससे सिद्ध होता है कि या और समान आव्यूह हैं।
प्रमेय 1
यदि और एक ही क्रम के आव्यूह हैं और व्युत्क्रमणीय हैं, तो