ज्या के नियम: Difference between revisions
Listen
Line 52: | Line 52: | ||
इसलिए, ज्या के नियम का उपयोग करते हुए, हमने पाया कि त्रिभुज में कोण <math>B \simeq 62.19^{\circ}</math>और कोण <math>C \simeq 77.81^\circ</math> भुजाओं की लंबाई <math>a = 8, b = 10,</math>और कोण <math>A = 40 ^\circ </math>है। | इसलिए, ज्या के नियम का उपयोग करते हुए, हमने पाया कि त्रिभुज में कोण <math>B \simeq 62.19^{\circ}</math>और कोण <math>C \simeq 77.81^\circ</math> भुजाओं की लंबाई <math>a = 8, b = 10,</math>और कोण <math>A = 40 ^\circ </math>है। | ||
== संक्षेप में == | |||
एक त्रिभुज को हल करने के लिए ज्या के नियम का उपयोग करने के लिए, प्रायः कम से कम एक भुजा-लम्बाई और उसके विपरीत कोण, या दो भुजा-लंबाई और उनके संबंधित कोणों को जानने की आवश्यकता होती है। इस जानकारी के साथ, आप ज्या के नियम के समीकरण का उपयोग करके अनुपात को सेट और हल कर सकते हैं। | एक त्रिभुज को हल करने के लिए ज्या के नियम का उपयोग करने के लिए, प्रायः कम से कम एक भुजा-लम्बाई और उसके विपरीत कोण, या दो भुजा-लंबाई और उनके संबंधित कोणों को जानने की आवश्यकता होती है। इस जानकारी के साथ, आप ज्या के नियम के समीकरण का उपयोग करके अनुपात को सेट और हल कर सकते हैं। | ||
[[Category:समतल में गति]][[Category:भौतिक विज्ञान]][[Category:कक्षा-11]] | [[Category:समतल में गति]][[Category:भौतिक विज्ञान]][[Category:कक्षा-11]] |
Revision as of 11:35, 23 January 2024
Law of sine
ज्या का नियम एक गणितीय संबंध है, जो त्रिभुज की भुजाओं और कोणों के बीच संबंध का वर्णन करता है। इसमें यह कहा जाता है कि त्रिभुज की एक भुजा की लंबाई का उसके विपरीत कोण की ज्या से अनुपात तीनों भुजाओं के लिए समान होता है।
गणितीय रूप से
ज्या के नियम को इस प्रकार व्यक्त किया जा सकता है:
इस समीकरण में, , , और त्रिभुज की भुजाओं की लंबाई का प्रतिनिधित्व करते हैं, जबकि , और उन पक्षों के विपरीत कोणों के उपायों का प्रतिनिधित्व करते हैं।
ज्या के नियम का उपयोग
इस नियम का उपयोग त्रिभुजों से संबंधित विभिन्न मापनों के हल निकालने के लिए किया जा सकता है, विशेषकर जब किसी त्रिभुज के कुछ कोणों की माप और कुछ भुजाओं की लंबाई के बारे में जानकारी हो। ज्या के नियम को लागू करके,किसी त्रिभुज की भुजाओं की अज्ञात लम्बाई या कोणों का पता लगाया जा सकता है।
उदाहरण द्वारा वर्णन
इस नियम का उपयोग कैसे करें, इसका वर्णन करने के लिए यहां एक उदाहरण दिया गया है:
भुजाओं की लंबाई और कोण डिग्री वाले त्रिभुज पर विचार करें। ज्या के नियम का प्रयोग करके हम कोण और भुजा की लंबाई का माप ज्ञात कर सकते हैं।
ज्या के नियम
का उपयोग कर,
दिए गए मानों को प्रतिस्थापित कर
क्रॉस-गुणा:
)
दोनों पक्षों को से भाग देने पर:
कोण B के लिए हल करने के लिए दोनों पक्षों की व्युत्क्रम ज्या लेना:
इस तरह है।
शेष कोण सी को खोजने के लिए, इस तथ्य का उपयोग करा जा सकता है कि त्रिकोण में कोणों का योग 180 डिग्री है:
इसलिए, ज्या के नियम का उपयोग करते हुए, हमने पाया कि त्रिभुज में कोण और कोण भुजाओं की लंबाई और कोण है।
संक्षेप में
एक त्रिभुज को हल करने के लिए ज्या के नियम का उपयोग करने के लिए, प्रायः कम से कम एक भुजा-लम्बाई और उसके विपरीत कोण, या दो भुजा-लंबाई और उनके संबंधित कोणों को जानने की आवश्यकता होती है। इस जानकारी के साथ, आप ज्या के नियम के समीकरण का उपयोग करके अनुपात को सेट और हल कर सकते हैं।