सादिशों का गुणन: Difference between revisions

From Vidyalayawiki

Listen

Line 7: Line 7:


=====    अदिश गुणन  =====
=====    अदिश गुणन  =====
   अदिश गुणन में, एक सदिश को, एक अदिश से गुणा करना सम्मलित है, जो एक वास्तविक संख्या है। अदिश मान को सादिश  के प्रत्येक घटक से गुणा किया जाता है। उदाहरण के लिए, यदि आपके पास <math>(A_1, A_2, A_3)</math> घटकों और एक अदिश <math>c</math> के साथ एक सादिश <math>A</math> है, तो अदिश गुणन की गणना इस प्रकार की जाती है:
   अदिश गुणन में, एक सदिश को, एक अदिश से गुणा करना सम्मलित है, जो एक वास्तविक संख्या है। अदिश मान को सादिश  के प्रत्येक घटक से गुणा किया जाता है। उदाहरण के लिए, यदि <math>A</math> एक सादिश है एवं जिसके घटक<math>(A_1, A_2, A_3)</math> का एक (अन्य ) अदिश <math>c</math> के साथ गुणन कीया जा रहा है ,तब इस प्रक्रीय का अदिश गुणन की गणना इस प्रकार की जा सकती है :


<math>c * A = (c * A_1, c * A_2, c * A_3)</math>
<math>c * A = (c * A_1, c * A_2, c * A_3)</math>
Line 23: Line 23:


======        तत्समक गुण ======
======        तत्समक गुण ======
<math>1 * A = A</math>(जहाँ 1 गुणक पहचान है)
<math>1 * A = A</math>(जहाँ 1 तत्सम गुणक है)


======    बिंदु (डॉट)-गुणनफल (अदिश गुणनफल) ======
======    बिंदु (डॉट)-गुणनफल (अदिश गुणनफल) ======

Revision as of 12:25, 6 February 2024

Multiplication of vectors

सादिशों का गुणन की अवधारणा प्रायः अदिश गुणन और बिंदु गुणनफल को संदर्भित करती है।अनुप्रस्थ गुणन प्रायः उच्च-स्तरीय गणित पाठ्यक्रमों में प्रस्तुत किया जाता है।

अदिश गुणन और बिंदु गुणन की व्याख्या

यहां अदिश गुणन और बिंदु गुणन की व्याख्या दी गई है :

   अदिश गुणन

   अदिश गुणन में, एक सदिश को, एक अदिश से गुणा करना सम्मलित है, जो एक वास्तविक संख्या है। अदिश मान को सादिश के प्रत्येक घटक से गुणा किया जाता है। उदाहरण के लिए, यदि एक सादिश है एवं जिसके घटक का एक (अन्य ) अदिश के साथ गुणन कीया जा रहा है ,तब इस प्रक्रीय का अदिश गुणन की गणना इस प्रकार की जा सकती है :

   परिणाम एक नया सादिश है जिसमें प्रत्येक घटक को अदिश मान द्वारा मानित (स्केल) किया गया है।

   अदिश गुण फलन के गुण
       वितरण गुण

(जहाँ एक अदिश राशि है और सदिश हैं)

       सहयोगी संपत्ति

(जहां और अदिश हैं और एक सादिश है)

       तत्समक गुण

(जहाँ 1 तत्सम गुणक है)

   बिंदु (डॉट)-गुणनफल (अदिश गुणनफल)

   दो सादिशों का बिंदु गुणनफल एक अदिश राशि है जो उनके संबंधित घटकों को गुणा करके और उन्हें जोड़कर प्राप्त किया जाता है। इसे प्रतीक "·" द्वारा या बिना किसी ऑपरेटर के केवल सदिशों को एक दूसरे के बगल में रखकर दर्शाया जाता है। उदाहरण के लिए, यदि आपके पास क्रमशः घटकों और के साथ दो सादिश और हैं, तो उनके बिंदु गुणनफल की गणना इस प्रकार की जाती है:

   बिंदु (डॉट)-गुणनफल (अदिश गुणनफल), परिणाम एक अदिश मान है ।

   बिंदु गुणनफल के गुण

       क्रमविनिमय संपत्ति

       वितरण गुण

(जहां , , और सादिश हैं)

       साहचर्य गुण

(जहां एक अदिश राशि है और , सादिश हैं)

संक्षेप में

सादिशों से संबंधित इन अवधारणाओं और गुणों को समझने से सादिश बीजगणित और इसके अनुप्रयोगों के अग्रिम अनुसंधानों के लिए एक ठोस आधार मिलेगा।