आव्यूह के सहखंडज और व्युत्क्रम: Difference between revisions
(content modified) |
(added content) |
||
Line 10: | Line 10: | ||
* सहखंड आव्यूह <math>C</math> का परिवर्त लेते हुए सहखंडज <math>A</math>(adj.<math>A</math>) को ज्ञात करें । | * सहखंड आव्यूह <math>C</math> का परिवर्त लेते हुए सहखंडज <math>A</math>(adj.<math>A</math>) को ज्ञात करें । | ||
=== <math> | === <math>3 \ X \ 3</math> आव्यूह का सहखंडज === | ||
<math>A = \begin{bmatrix} 2 & -1 & 3 \\ 0 & 5 & 2 \\ 1 & -1 & -2 \end{bmatrix}</math> | <math>A = \begin{bmatrix} 2 & -1 & 3 \\ 0 & 5 & 2 \\ 1 & -1 & -2 \end{bmatrix}</math> | ||
''' | '''प्रक्रिया 1:''' आव्यूह <math>A</math> के सभी अवयवों का उपसारणिक आव्यूह <math>M</math> को ज्ञात करें । | ||
''''' | '''''पंक्ति 1:''''' | ||
<math>2 = \begin{vmatrix} 5 & 2 \\ -1 & -2 \end{vmatrix}=(-10-(-2))=-10+2=-8</math> का उपसारणिक | |||
<math>-1 = \begin{vmatrix} 0 & 2 \\ 1 & -2 \end{vmatrix}=(0-2)=-2</math> का उपसारणिक | |||
<math>3 = \begin{vmatrix} 0 & 5 \\ 1 & -1 \end{vmatrix}=(0-5))=-5</math> का उपसारणिक | |||
''''' | '''''पंक्ति 2:''''' | ||
<math>0 = \begin{vmatrix} -1 & 3 \\ -1 & -2 \end{vmatrix}=(2-(-3))=2+3=5</math> का उपसारणिक | |||
<math>5 = \begin{vmatrix} 2 & 3 \\ 1 & -2 \end{vmatrix}=(-4-3)=-7</math> का उपसारणिक | |||
<math>2 = \begin{vmatrix} 2 & -1 \\ 1 & -1 \end{vmatrix}=(-2-(-1))=-1</math> का उपसारणिक | |||
''''' | '''''पंक्ति 3:''''' | ||
<math>1 = \begin{vmatrix} -1 & 3 \\ 5 & 2 \end{vmatrix}=(-2-15)=-17</math> का उपसारणिक | |||
<math>-1 = \begin{vmatrix} 2 & 3 \\ 0 & 2 \end{vmatrix}=(4-0)=4</math> का उपसारणिक | |||
<math>-2 = \begin{vmatrix} 2 & -1 \\ 0 & 5 \end{vmatrix}=(10-0)=10</math> का उपसारणिक | |||
आव्यूह <math>A</math> का उपसारणिक <math>M= \begin{bmatrix} -8 & -2 & -5 \\ 5 & -7 & -1 \\ -17 & 4 & 10 \end{bmatrix}</math> | |||
To find the cofactors of <math>3 \ X \ 3</math> matrix, the corresponding | '''प्रक्रिया''' '''2:''' Find the cofactor matrix <math>C</math> of all the उपसारणिक elements of matrix <math>M</math> | ||
To find the cofactors of <math>3 \ X \ 3</math> matrix, the corresponding उपसारणिकs should be multiplied by the signs below according to their position. | |||
<math>C= \begin{bmatrix} + & - & + \\ - & + & - \\ + & - & + \end{bmatrix}</math> | <math>C= \begin{bmatrix} + & - & + \\ - & + & - \\ + & - & + \end{bmatrix}</math> | ||
उपसारणिक of Matrix <math>A</math> is <math>M= \begin{bmatrix} -8 & -2 & -5 \\ 5 & -7 & -1 \\ -17 & 4 & 10 \end{bmatrix}</math> | |||
Cofactor of Matrix A is <math>C= \begin{bmatrix} -8 & 2 & -5 \\ -5 & -7 & 1 \\ -17 & -4 & 10 \end{bmatrix}</math> | Cofactor of Matrix A is <math>C= \begin{bmatrix} -8 & 2 & -5 \\ -5 & -7 & 1 \\ -17 & -4 & 10 \end{bmatrix}</math> |
Revision as of 12:54, 8 February 2024
किसी आव्यूह के व्युत्क्रम की गणना करने के लिए आव्यूह के सहखंडज की आवश्यकता होती है।
आव्यूह के सहखंडज
आव्यूह का सहखंडज, के सहखंड आव्यूह का परिवर्त है। वर्ग आव्यूह का सहखंडज (adj.) द्वारा निरूपित किया जाता है। मान लीजिए , कोटि का एक वर्ग आव्यूह है।
किसी आव्यूह का सहखंडज ज्ञात करने में सम्मिलित प्रक्रिया इस प्रकार हैं:
- आव्यूह के सभी अवयवों का उपसारणिक आव्यूह को ज्ञात करें ।
- आव्यूह के सभी उपसारणिक अवयवों का सहखंड आव्यूह को ज्ञात करें ।
- सहखंड आव्यूह का परिवर्त लेते हुए सहखंडज (adj.) को ज्ञात करें ।
आव्यूह का सहखंडज
प्रक्रिया 1: आव्यूह के सभी अवयवों का उपसारणिक आव्यूह को ज्ञात करें ।
पंक्ति 1:
का उपसारणिक
का उपसारणिक
का उपसारणिक
पंक्ति 2:
का उपसारणिक
का उपसारणिक
का उपसारणिक
पंक्ति 3:
का उपसारणिक
का उपसारणिक
का उपसारणिक
आव्यूह का उपसारणिक
प्रक्रिया 2: Find the cofactor matrix of all the उपसारणिक elements of matrix
To find the cofactors of matrix, the corresponding उपसारणिकs should be multiplied by the signs below according to their position.
उपसारणिक of Matrix is
Cofactor of Matrix A is
Step 3: Find the adj by taking the transpose of the cofactor matrix
Adjoint of Matrix A is adj = Transpose of the Cofactor Matrix
Inverse of a Matrix
The inverse of a matrix , which is represented as , is found using the adjoint of a matrix.
A-1 = (1/|A|) × adj(A). Here,
Here
- = the determinant of
- = adjoint of
Inverse of a Matrix
determinant of
Adjoint of Matrix
Inverse of matrix