रेखीय संवेग: Difference between revisions
Listen
No edit summary |
|||
Line 36: | Line 36: | ||
&= m_1 v_1 + m_2 v_2\,. | &= m_1 v_1 + m_2 v_2\,. | ||
\end{align} </math> | \end{align} </math> | ||
दो से अधिक कणों के संवेग को निम्नलिखित के साथ अधिक सामान्यतः जोड़ा जा सकता है: | |||
<math> p = \sum_{i} m_i v_i </math> | |||
कणों की एक प्रणाली में द्रव्यमान का एक केंद्र होता है, एक बिंदु जो उनकी स्थिति के भारित योग द्वारा निर्धारित होता है: | |||
<math> r_\text{cm} = \frac{m_1 r_1 + m_2 r_2 + \cdots}{m_1 + m_2 + \cdots} = \frac{\sum_{i}m_ir_i}{\sum_{i}m_i} </math> | |||
कणों की एक प्रणाली में द्रव्यमान का एक केंद्र होता है, एक बिंदु जो उनकी स्थिति के भारित योग द्वारा निर्धारित होता है: | |||
== संवेग के संरक्षण का सिद्धांत == | == संवेग के संरक्षण का सिद्धांत == |
Revision as of 11:37, 21 February 2024
Linear momentum
रेखीय संवेग, जिसे प्रायः, संवेग के रूप में संदर्भित किया जाता है, भौतिकी में एक मौलिक अवधारणा है, जो किसी वस्तु की गति का वर्णन करता है। इसे किसी वस्तु के द्रव्यमान और उसके वेग के उत्पाद के रूप में परिभाषित किया जाता है।
शास्त्रीय यांत्रिकी में परिभाषा
संवेग एक सदिश राशि है: इसमें परिमाण और दिशा दोनों होते हैं। चूँकि संवेग की एक दिशा होती है, इसका उपयोग वस्तुओं के टकराने के बाद उनकी परिणामी दिशा और गति की भविष्यवाणी करने के लिए किया जा सकता है। नीचे, संवेग के मूल गुणों को एक आयाम में वर्णित किया गया है। सादिश समीकरण लगभग अदिश समीकरणों के समान होते हैं (कई आयाम देखें)।
एकल कण
किसी कण के संवेग को पारंपरिक रूप से अक्षर p द्वारा दर्शाया जाता है। यह दो मात्राओं, कण का द्रव्यमान (अक्षर m द्वारा दर्शाया गया) और उसका वेग (v) का गुणनफल है।
गणितीय रूप से
रेखीय संवेग () को इस प्रकार दर्शाया जाता है:
जहाँ:
= रेखीय गति
वस्तु का द्रव्यमान
वस्तु का वेग
संवेग की इकाई किलोग्राम-मीटर प्रति सेकंड () है।
एसआई इकाइयों में
यदि द्रव्यमान किलोग्राम में है और वेग मीटर प्रति सेकंड में है तो गति किलोग्राम मीटर प्रति सेकंड () में है। सीजीएस इकाइयों में, यदि द्रव्यमान ग्राम में है और वेग सेंटीमीटर प्रति सेकंड में है, तो गति ग्राम सेंटीमीटर प्रति सेकंड (g⋅cm/s) में है।
एक सादिश होने के नाते, संवेग में परिमाण और दिशा होती है। उदाहरण के लिए, एक 1 किलो मॉडल का हवाई जहाज, जो सीधी और समतल उड़ान में (मीटर/सेकेंड) की गति से उत्तर की ओर यात्रा कर रहा है, जमीन के संदर्भ में उत्तर की ओर जाने वाली गति किलो⋅मीटर/सेकेंड) की गति से मापी जाती है।
अनेक कण
कणों की एक प्रणाली का संवेग उनके संवेग का सदिश योग होता है। यदि दो कणों का द्रव्यमान और है, और वेग और है, तो कुल संवेग है
दो से अधिक कणों के संवेग को निम्नलिखित के साथ अधिक सामान्यतः जोड़ा जा सकता है:
कणों की एक प्रणाली में द्रव्यमान का एक केंद्र होता है, एक बिंदु जो उनकी स्थिति के भारित योग द्वारा निर्धारित होता है:
कणों की एक प्रणाली में द्रव्यमान का एक केंद्र होता है, एक बिंदु जो उनकी स्थिति के भारित योग द्वारा निर्धारित होता है:
संवेग के संरक्षण का सिद्धांत
संवेग के संरक्षण का सिद्धांत कहता है कि एक बंद प्रणाली का कुल संवेग स्थिर रहता है, यदि कोई बाहरी बल उस पर कार्य नहीं करता है। इसका तात्पर्य यह है कि बाहरी बलों की अनुपस्थिति में, किसी घटना या पारस्परिक क्रीया से पहले की कुल गति,घटना या पारस्परिक क्रीया के बाद की कुल गति के समतुल्य होती है।
गति की अवधारणा विशेष रूप से वस्तुओं के बीच टकराव और पारस्परिक क्रीया का विश्लेषण करने में उपयोगी होती है। टकराव की अवधि , प्रणाली (सिस्टम) की कुल गति को संरक्षित किया जाता है, जिससे सम्मलित वस्तुओं के वेगों या परिणामों की भविष्यवाणी करने की अनुमति मिलती है।
इसके अतिरिक्त, किसी वस्तु के संवेग में परिवर्तन की दर उस पर कार्य करने वाले शुद्ध बल के समतुल्य होती है, जैसा कि न्यूटन के गति के दूसरे नियम द्वारा वर्णित है:
जहाँ:
= वस्तु पर कार्य करने वाला शुद्ध बल
= वस्तु के संवेग में परिवर्तन
= समय में परिवर्तन
संक्षेप में
शास्त्रीय यांत्रिकी में गति और वस्तुओं के पारस्परिक प्रभाव को समझने और भविष्यवाणी करने में रेखीय गति महत्वपूर्ण भूमिका निभाती है।