जड़त्व आघूर्ण: Difference between revisions
Listen
Line 12: | Line 12: | ||
घूर्णनशील कुर्सी प्रयोग का वीडियो, जड़ता के क्षण का चित्रण। जब घूमता हुआ प्रोफेसर अपनी भुजाएँ खींचता है, तो उसकी जड़ता का क्षण कम हो जाता है; कोणीय गति को संरक्षित करने के लिए, उसका कोणीय वेग बढ़ जाता है। | घूर्णनशील कुर्सी प्रयोग का वीडियो, जड़ता के क्षण का चित्रण। जब घूमता हुआ प्रोफेसर अपनी भुजाएँ खींचता है, तो उसकी जड़ता का क्षण कम हो जाता है; कोणीय गति को संरक्षित करने के लिए, उसका कोणीय वेग बढ़ जाता है। | ||
जड़त्व आघूर्ण <math>I</math> को किसी प्रणाली के शुद्ध कोणीय संवेग <math>L</math>और मुख्य अक्ष के चारों ओर इसके कोणीय वेग <math>\omega</math> के अनुपात के रूप में भी परिभाषित किया गया है, | |||
== गणितीय प्रतिनिधित्व == | == गणितीय प्रतिनिधित्व == |
Revision as of 13:36, 12 March 2024
Moment of inertia
जड़त्व आघूर्ण किसी वस्तु का भौतिक गुण है जो घूर्णी गति के प्रतिरोध को मापता है। यह रेखीय गति में द्रव्यमान के अनुरूप है और वर्णन करता है कि द्रव्यमान को घूर्णन के अक्ष के चारों ओर कैसे वितरित किया जाता है। जड़ता का क्षण बड़े पैमाने पर द्रव्यमान के वितरण और वस्तु के आकार दोनों पर निर्भर करता है।
परिभाषा
जड़त्व आघूर्ण को खंड के द्रव्यमान और संदर्भ अक्ष और खंड के केन्द्रक के बीच की दूरी के वर्ग के गुणनफल के रूप में परिभाषित किया गया है।
रज्जु (रस्सी) पर चलने वाला ,नट एक लंबे छड़ के मध्य में रह कर अपने भार को उस सकरी से पथ पर निश्चित रूप से स्थापित कर कदम आगे भद सकता है क्योंकी उस नट के शरीर की लंबाई और चौड़ाई की प्रणाली के मध्य में स्थितः खंड केन्द्रक का उस रज्जु पर स्थापन ,उस लांब छड़ की क्षैतिज चौड़ाई (जिसको की वह हाथ में लीये रहता है ) के कारण और अधिक दृढ़ हो जाता है। हाथ में लंब छड़ लीया व्यक्ति ,रज्जु के छोर पर संतुलित केंद्र के रूप में स्थापित रहता है और इस स्थिती में उस को व्यक्ति रूप ना देख कर व्यवस्था रूप में देखने से पता चलता है की इस व्यवस्था का जड़त्व आघूर्ण कहीं अधिक हो चुका है
स्पिनिंग फिगर स्केटर्स अपनी बाहों को खींचकर जड़ता के क्षण को कम कर सकते हैं, जिससे उन्हें कोणीय गति के संरक्षण के कारण तेजी से घूमने की अनुमति मिलती है।
घूर्णनशील कुर्सी प्रयोग का वीडियो, जड़ता के क्षण का चित्रण। जब घूमता हुआ प्रोफेसर अपनी भुजाएँ खींचता है, तो उसकी जड़ता का क्षण कम हो जाता है; कोणीय गति को संरक्षित करने के लिए, उसका कोणीय वेग बढ़ जाता है।
जड़त्व आघूर्ण को किसी प्रणाली के शुद्ध कोणीय संवेग और मुख्य अक्ष के चारों ओर इसके कोणीय वेग के अनुपात के रूप में भी परिभाषित किया गया है,
गणितीय प्रतिनिधित्व
किसी वस्तु का जड़त्व आघूर्ण () द्रव्यमान तत्वों () के उत्पादों के योग और परिक्रमण की धुरी से उनकी संबंधित दूरी () के गणितीय समीकरण
द्वारा दिया जाता है।
सतत रूप में, इसे एक अभिन्न के रूप को
व्यक्त किया जा सकता है
जहाँ:
= जड़त्व आघूर्ण
= परिक्रमण की धुरी से दूरी
= द्रव्यमान तत्व
जड़त्व आघूर्ण,परिक्रमण के चुने हुए अक्ष पर निर्भर करता है। विभिन्न आकृतियों के लिए, जड़त्वाघूर्ण की गणना करने के लिए विशिष्ट सूत्र हैं। यहाँ कुछ सामान्य आकृतियों के सूत्र दिए गए हैं:
बिन्दु संहति द्रव्यमान (प्वाइंट मास)
एक बिंदु द्रव्यमान () के लिए दूरी () पर धुरी के चारों ओर घूमते हुए:
एकरूप छड़
लंबाई की एक समान छड़ के लिए () अपने केंद्र से गुजरने वाली धुरी के चारों ओर घूमती है:
एकरूप चक्रिका (डिस्क)
त्रिज्या () की एक समान डिस्क के लिए जो अपने केंद्र से गुजरने वाली धुरी के चारों ओर घूमती है:
एकरूप गोलक
त्रिज्या () के एक समान ठोस गोले के लिए, जो अपने केंद्र से होकर गुजरने वाली धुरी के चारों ओर घूमता है:
संक्षेप में
ये सूत्र एक सरलीकृत प्रतिनिधित्व प्रदान करते हैं, लेकिन अनियमित आकार की वस्तुओं या कई वस्तुओं की प्रणालियों के लिए जड़त्व आघूर्ण की गणना अधिक जटिल हो सकती है। जड़त्व आघूर्ण ,परिक्रमण (घूर्णी गतिकी) में एक आवश्यक मापदण्ड है और घूर्णी गति का वर्णन करने और घूर्णी संतुलन, घूर्णी त्वरण और कोणीय गति के संरक्षण से संबंधित समस्याओं का विश्लेषण करने में महत्वपूर्ण भूमिका निभाता है।