सार्वत्रिक समुच्चय: Difference between revisions
(added content) |
No edit summary |
||
Line 6: | Line 6: | ||
* एक सार्वत्रिक समुच्चय या तो परिमित या अपरिमित समुच्चय हो सकता है। | * एक सार्वत्रिक समुच्चय या तो परिमित या अपरिमित समुच्चय हो सकता है। | ||
* प्राकृत संख्याओं का समुच्चय अपरिमित सार्वत्रिक समुच्चय का एक विशिष्ट उदाहरण है। | * प्राकृत संख्याओं का समुच्चय अपरिमित सार्वत्रिक समुच्चय का एक विशिष्ट उदाहरण है। | ||
<nowiki>आइए तीन समुच्चयों, A | <nowiki>आइए तीन समुच्चयों, <math>A</math>,<math>B</math> और <math>C</math> वाले एक उदाहरण पर विचार करें। यहां, <math>A=\{1,2,3\}</math>, <math>B=\{4,5,6,7,8,9\}</math>, और <math>C=\{9,11,12\}</math>। हमें तीनों समुच्चयों <math>A</math>,<math>B</math> और <math>C</math> के लिए सार्वत्रिक समुच्चय ज्ञात करना होगा। दिए गए समुच्चय के सभी अवयव सार्वत्रिक समुच्चय में समाहित होते हैं। इस प्रकार, सार्वत्रिक समुच्चय <math>A</math>,<math>B</math> और <math>C</math> का <math>U</math>, <math>U=\{1,2,3,4,5,6,7,8,9,10,11,12\}</math> द्वारा दिया जा सकता है।</nowiki> | ||
हम देख सकते हैं कि तीनों समुच्चयों के सभी अवयव सार्वत्रिक समुच्चय में बिना किसी पुनरावृत्ति के उपस्थित हैं। इस प्रकार, हम कह सकते हैं कि सार्वत्रिक समुच्चय के सभी अवयव अद्वितीय हैं। समुच्चय A | हम देख सकते हैं कि तीनों समुच्चयों के सभी अवयव सार्वत्रिक समुच्चय में बिना किसी पुनरावृत्ति के उपस्थित हैं। इस प्रकार, हम कह सकते हैं कि सार्वत्रिक समुच्चय के सभी अवयव अद्वितीय हैं। समुच्चय <math>A</math>,<math>B</math> और <math>C</math> सार्वत्रिक समुच्चय में समाहित होते हैं, तो इन समुच्चयों को सार्वत्रिक समुच्चय का उपसमुच्चय भी कहा जाता है। | ||
* <math>A \subset U </math> (<math>A</math> is the subset of <math>U</math>) | |||
* <math>B \subset U </math> (<math>B</math> is the subset of <math>U</math>) | |||
* <math>C \subset U </math> (<math>C</math> is the subset of <math>U</math> | |||
[[Category:समुच्चय]][[Category:कक्षा-11]][[Category:गणित]] | [[Category:समुच्चय]][[Category:कक्षा-11]][[Category:गणित]] |
Revision as of 08:10, 27 March 2024
सार्वत्रिक समुच्चय एक ऐसा समुच्चय है जिसमें किसी विशिष्ट संदर्भ से संबंधित सभी अवयव उपस्थित होते हैं। सार्वत्रिक समुच्चय को द्वारा निरूपित किया जाता है, जो किसी दिए गए संदर्भ के संबंध में सभी समुच्चयों का अधिसमुच्चय(सुपरसेट) होता है।
परिभाषा
सार्वत्रिक समुच्चय सभी संबंधित समुच्चयों के सभी अवयवों या सदस्यों का समुच्चय है। इसे प्रायः प्रतीक द्वारा दर्शाया जाता है। उदाहरण के लिए, मानव जनसंख्या अध्ययन में, सार्वत्रिक समुच्चय दुनिया के सभी लोगों का समुच्चय है। प्रत्येक देश के सभी लोगों के समुच्चय को इस सार्वत्रिक समुच्चय का उपसमुच्चय माना जा सकता है।
- एक सार्वत्रिक समुच्चय या तो परिमित या अपरिमित समुच्चय हो सकता है।
- प्राकृत संख्याओं का समुच्चय अपरिमित सार्वत्रिक समुच्चय का एक विशिष्ट उदाहरण है।
आइए तीन समुच्चयों, <math>A</math>,<math>B</math> और <math>C</math> वाले एक उदाहरण पर विचार करें। यहां, <math>A=\{1,2,3\}</math>, <math>B=\{4,5,6,7,8,9\}</math>, और <math>C=\{9,11,12\}</math>। हमें तीनों समुच्चयों <math>A</math>,<math>B</math> और <math>C</math> के लिए सार्वत्रिक समुच्चय ज्ञात करना होगा। दिए गए समुच्चय के सभी अवयव सार्वत्रिक समुच्चय में समाहित होते हैं। इस प्रकार, सार्वत्रिक समुच्चय <math>A</math>,<math>B</math> और <math>C</math> का <math>U</math>, <math>U=\{1,2,3,4,5,6,7,8,9,10,11,12\}</math> द्वारा दिया जा सकता है।
हम देख सकते हैं कि तीनों समुच्चयों के सभी अवयव सार्वत्रिक समुच्चय में बिना किसी पुनरावृत्ति के उपस्थित हैं। इस प्रकार, हम कह सकते हैं कि सार्वत्रिक समुच्चय के सभी अवयव अद्वितीय हैं। समुच्चय , और सार्वत्रिक समुच्चय में समाहित होते हैं, तो इन समुच्चयों को सार्वत्रिक समुच्चय का उपसमुच्चय भी कहा जाता है।
- ( is the subset of )
- ( is the subset of )
- ( is the subset of