संख्या पद्धति: Difference between revisions

From Vidyalayawiki

(New Mathematics Class 9 Hindi Page Created)
(content added)
Line 3: Line 3:
[[Category:कक्षा-9]][[Category:गणित]]
[[Category:कक्षा-9]][[Category:गणित]]
संख्या पद्धति/प्रणाली संख्याओं का नामकरण या प्रतिनिधित्व करने की पद्धति है। संख्या एक गणितीय मान है जो वस्तुओं को गिनने या मापने में मदद करती है और यह विभिन्न गणितीय गणनाएँ करने में मदद करती है।
संख्या पद्धति/प्रणाली संख्याओं का नामकरण या प्रतिनिधित्व करने की पद्धति है। संख्या एक गणितीय मान है जो वस्तुओं को गिनने या मापने में मदद करती है और यह विभिन्न गणितीय गणनाएँ करने में मदद करती है।
== परिभाषा ==
संख्या पद्धति को संख्याओं को व्यक्त करने के लिए लिखने की पद्धति के रूप में परिभाषित किया जाता है। यह अंकों या अन्य प्रतीकों का सुसंगत तरीके से उपयोग करके किसी दिए गए सेट की संख्याओं का प्रतिनिधित्व करने के लिए गणितीय संकेतन है। यह प्रत्येक संख्या का एक अद्वितीय प्रतिनिधित्व प्रदान करता है और आंकड़ों की अंकगणित और बीजगणितीय संरचना का प्रतिनिधित्व करता है। यह हमें जोड़, घटाव, गुणा और भाग जैसे अंकगणितीय ऑपरेशन संचालित करने की भी अनुमति देता है।
किसी संख्या में किसी भी अंक का मान निम्न द्वारा निर्धारित किया जा सकता है:
* अंक
* संख्या में उसका स्थान
* संख्या पद्धति का आधार
== संख्या पद्धतियों के प्रकार ==
गणित में विभिन्न प्रकार की संख्या पद्धतियाँ हैं। चार सर्वाधिक सामान्य संख्या पद्धति इस प्रकार हैं:
# दशमलव संख्या पद्धति (आधार-<math>10</math>})
# द्वि आधारी(बाइनरी) आधारी संख्या पद्धति (आधार-<math>2</math>})
# अष्टाधारी संख्या पद्धति (आधार-<math>8</math>})
# षोडश आधारी(हेक्साडेसिमल) संख्या पद्धति (आधार-<math>16</math>})
=== दशमलव संख्या पद्धति (आधार 10 संख्या पद्धति) ===
दशमलव संख्या पद्धति का आधार <math>10</math> है क्योंकि यह <math>0</math> से <math>9</math> तक दस अंकों का उपयोग करता है। दशमलव संख्या पद्धति में, दशमलव बिंदु के बाईं ओर की क्रमिक स्थानइकाइयों, दहाई, सैकड़ों, हजारों आदि को दर्शाती है। यह पद्धति दशमलव संख्याओं में व्यक्त की जाती है। प्रत्येक स्थान आधार का एक विशेष घात दर्शाता है (<math>10</math>)।
'''दशमलव संख्या पद्धति के उदाहरण:'''
दशमलव संख्या <math>1234</math> में इकाई स्थान में अंक  शामिल है,दहाई के स्थान पर 3, सैकड़े के स्थान पर 2, और हज़ार के स्थान पर 1 जिसका मान इस प्रकार लिखा जा सकता है:
<math>(1\times10^3)+(2\times10^2)+(3\times10^1)+(4\times10^0)</math>
<math>(1\times1000)+(2\times100)+(3\times10)+(4\times1)</math>
<math>(1000 + 200 + 30 +4)</math>
<math>1234</math>

Revision as of 16:14, 22 April 2024

संख्या पद्धति/प्रणाली संख्याओं का नामकरण या प्रतिनिधित्व करने की पद्धति है। संख्या एक गणितीय मान है जो वस्तुओं को गिनने या मापने में मदद करती है और यह विभिन्न गणितीय गणनाएँ करने में मदद करती है।

परिभाषा

संख्या पद्धति को संख्याओं को व्यक्त करने के लिए लिखने की पद्धति के रूप में परिभाषित किया जाता है। यह अंकों या अन्य प्रतीकों का सुसंगत तरीके से उपयोग करके किसी दिए गए सेट की संख्याओं का प्रतिनिधित्व करने के लिए गणितीय संकेतन है। यह प्रत्येक संख्या का एक अद्वितीय प्रतिनिधित्व प्रदान करता है और आंकड़ों की अंकगणित और बीजगणितीय संरचना का प्रतिनिधित्व करता है। यह हमें जोड़, घटाव, गुणा और भाग जैसे अंकगणितीय ऑपरेशन संचालित करने की भी अनुमति देता है।

किसी संख्या में किसी भी अंक का मान निम्न द्वारा निर्धारित किया जा सकता है:

  • अंक
  • संख्या में उसका स्थान
  • संख्या पद्धति का आधार

संख्या पद्धतियों के प्रकार

गणित में विभिन्न प्रकार की संख्या पद्धतियाँ हैं। चार सर्वाधिक सामान्य संख्या पद्धति इस प्रकार हैं:

  1. दशमलव संख्या पद्धति (आधार-})
  2. द्वि आधारी(बाइनरी) आधारी संख्या पद्धति (आधार-})
  3. अष्टाधारी संख्या पद्धति (आधार-})
  4. षोडश आधारी(हेक्साडेसिमल) संख्या पद्धति (आधार-})

दशमलव संख्या पद्धति (आधार 10 संख्या पद्धति)

दशमलव संख्या पद्धति का आधार है क्योंकि यह से तक दस अंकों का उपयोग करता है। दशमलव संख्या पद्धति में, दशमलव बिंदु के बाईं ओर की क्रमिक स्थानइकाइयों, दहाई, सैकड़ों, हजारों आदि को दर्शाती है। यह पद्धति दशमलव संख्याओं में व्यक्त की जाती है। प्रत्येक स्थान आधार का एक विशेष घात दर्शाता है ()।

दशमलव संख्या पद्धति के उदाहरण:

दशमलव संख्या में इकाई स्थान में अंक शामिल है,दहाई के स्थान पर 3, सैकड़े के स्थान पर 2, और हज़ार के स्थान पर 1 जिसका मान इस प्रकार लिखा जा सकता है: