प्रतिरोधकता के ताप पर निर्भरता: Difference between revisions

From Vidyalayawiki

No edit summary
No edit summary
Line 1: Line 1:
Temperature dependence of resistivity<math>(\rho)</math>
Temperature dependence of resistivity<math>(\rho)</math>


प्रतिरोधकता (<math>\rho</math> ) सामग्रियों की एक मौलिक संपत्ति है जो विद्युत प्रवाह के प्रवाह का विरोध करने की उनकी क्षमता को निर्धारित करती है. यह सीधे विद्युत प्रतिरोध से संबंधित है ( <math>R</math>) और अनुप्रस्थ-अनुभागीय क्षेत्र ( सामग्री का <math>A</math> ), जैसा कि सूत्र द्वारा दिया गया है:
प्रतिरोधकता (<math>\rho</math> ) सामग्रियों की एक मौलिक संपत्ति है, जो विद्युतीय प्रवाह का विरोध कर,उस सामग्री-विशेष की प्रतिरोधक क्षमता को निर्धारित करती है. यह सीधे विद्युत प्रतिरोध से संबंधित है ( <math>R</math>) और अनुप्रस्थ-अनुभागीय क्षेत्र ( सामग्री का <math>A</math> ), जैसा कि सूत्र द्वारा दिया गया है:


प्रतिरोध ( <math>R</math>) = प्रतिरोधकता (<math>\rho</math> )<math>\times</math> लंबाई <math>\frac{l}{A},</math> / क्रॉस-अनुभागीय क्षेत्र )  
प्रतिरोध ( <math>R</math>) = प्रतिरोधकता (<math>\rho</math> )<math>\times</math> लंबाई <math>\frac{l}{A},</math> / क्रॉस-अनुभागीय क्षेत्र )  

Revision as of 09:19, 10 June 2024

Temperature dependence of resistivity

प्रतिरोधकता ( ) सामग्रियों की एक मौलिक संपत्ति है, जो विद्युतीय प्रवाह का विरोध कर,उस सामग्री-विशेष की प्रतिरोधक क्षमता को निर्धारित करती है. यह सीधे विद्युत प्रतिरोध से संबंधित है ( ) और अनुप्रस्थ-अनुभागीय क्षेत्र ( सामग्री का ), जैसा कि सूत्र द्वारा दिया गया है:

प्रतिरोध ( ) = प्रतिरोधकता ( ) लंबाई / क्रॉस-अनुभागीय क्षेत्र )

अब, प्रतिरोधकता के तापमान निर्भरता पर ध्यान दें:

   धातु:

   अधिकांश धातुओं में, तापमान में वृद्धि के साथ प्रतिरोधकता बढ़ जाती है. इस व्यवहार को इलेक्ट्रॉनों के बिखरने के माध्यम से समझा जा सकता है. कम तापमान पर, इलेक्ट्रॉन कम तापीय आंदोलन का अनुभव करते हैं और क्रिस्टल जाली के माध्यम से अधिक स्वतंत्र रूप से आगे बढ़ते हैं, जिससे कम प्रतिरोधकता होती है. हालांकि, जैसे-जैसे तापमान बढ़ता है, जाली कंपन ( फोन ) अधिक महत्वपूर्ण हो जाते हैं, जिससे इलेक्ट्रॉनों और फोनन के बीच अधिक लगातार टकराव होता है. ये टकराव इलेक्ट्रॉन की गति में बाधा डालते हैं, जिसके परिणामस्वरूप प्रतिरोधकता में वृद्धि होती है.

धातुओं के लिए प्रतिरोधकता की तापमान निर्भरता को अक्सर इलेक्ट्रॉन-फॉनन बिखरने के लिए "बलोच-ग्रुएनसेन सूत्र" द्वारा तैयार किया जा सकता है:

ρ ( T ) = ( 0 ) + αT

कहाँ पे:

ρ ( T ) तापमान T पर प्रतिरोधकता है,

ρ ( 0 ) पूर्ण शून्य पर प्रतिरोधकता है ( T = 0 K ),

α प्रतिरोधकता का तापमान गुणांक है, और

केल्विन में टी तापमान है.

   अर्धचालक:

   अर्धचालकों में प्रतिरोधकता की तापमान निर्भरता धातुओं की तुलना में अधिक जटिल है. आंतरिक अर्धचालक ( शुद्ध, पूर्ववत ) में प्रतिरोधकता का एक नकारात्मक तापमान गुणांक होता है, जिसका अर्थ है कि बढ़ते तापमान के साथ उनकी प्रतिरोधकता कम हो जाती है. इस व्यवहार को थर्मल ऊर्जा के कारण उच्च तापमान पर उत्पन्न चार्ज वाहक ( इलेक्ट्रॉनों या छेद ) की बढ़ती संख्या से समझाया जा सकता है. अधिक चार्ज वाहक बेहतर विद्युत चालकता और कम प्रतिरोधकता के परिणामस्वरूप होते हैं.

हालांकि, बाहरी अर्धचालकों में ( डोप्ड ), डोपिंग के प्रकार के आधार पर व्यवहार भिन्न हो सकता है. उदाहरण के लिए, एन-प्रकार के अर्धचालकों में प्रतिरोधकता के नकारात्मक तापमान गुणांक होते हैं, जबकि पी-प्रकार के अर्धचालकों में सकारात्मक तापमान गुणांक होते हैं. तापमान निर्भरता आवेश वाहकों की एकाग्रता और गतिशीलता से प्रभावित होती है.

   इन्सुलेटर:

   इन्सुलेटर में आमतौर पर प्रतिरोधकता की बहुत कमजोर तापमान निर्भरता होती है. जैसा कि उनके नाम से पता चलता है, इन सामग्रियों में अत्यधिक उच्च प्रतिरोधकता है और चालन के लिए बहुत कम चार्ज वाहक उपलब्ध हैं. इस प्रकार, तापमान में परिवर्तन का उनकी प्रतिरोधकता पर न्यूनतम प्रभाव पड़ता है.

संक्षेप में, धातुओं में प्रतिरोधकता की तापमान निर्भरता आमतौर पर सकारात्मक होती है ( प्रतिरोधकता तापमान के साथ बढ़ जाती है ), जबकि आंतरिक अर्धचालकों में, यह नकारात्मक है ( प्रतिरोधकता तापमान के साथ कम हो जाती है ). बाहरी अर्धचालक और इन्सुलेटर अपने विशिष्ट गुणों के आधार पर कमजोर तापमान निर्भरता दिखा सकते हैं. विभिन्न तापमान स्थितियों के तहत विद्युत सर्किट और उपकरणों के व्यवहार का अध्ययन करने के लिए इन अवधारणाओं को समझना महत्वपूर्ण है.