आवेशों के निकाय के कारण विभव: Difference between revisions

From Vidyalayawiki

Listen

No edit summary
Line 23: Line 23:


===== सतत बिंदु आवेश =====
===== सतत बिंदु आवेश =====
यदि संदर्भ वृत पर बिंदु आवेशों का नियोजित वितरण सतत है और जिसका प्रतिनिधत्व, एक गणितीय फलन <math>\rho (r)</math> से किया जा सकता है तो आवेश वितरण की क्षमता <math>\rho (r)</math>बन जाती है
यदि संदर्भ वृत पर बिंदु आवेशों का नियोजित वितरण सतत है और जिसका प्रतिनिधत्व, एक गणितीय फलन <math>\rho (r)</math> से किया जा सकता है तो,ऐसे आवेश वितरण से उपजी विभवता को निम्नलिखित सूत्रों से गणित कीया जा सकता है :


<math> V_\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int_R \frac{\rho(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} \mathrm{d}^3 r'\,</math>,
जहाँ,*<math>r </math> एक बिंदु है जिस पर क्षमता का मूल्यांकन किया जाता है ।
*<math>R</math> एक ऐसा क्षेत्र है जिसमें वे सभी बिंदु सम्मलित हैं जिन पर आवेश घनत्व शून्येतर है ।
*<math>r{{'}}</math> ,<math>R</math> क्षेत्र के अंदर एक बिंदु है ।
और*<math>\rho(r{{'})},</math> बिंदु <math>r{{'}},</math>पर आवेश घनत्व है ।
आवेशों की एक प्रणाली के कारण होने वाली विभव एक अदिश राशि है, जिसका अर्थ है, कि इसमें परिमाण तो हैं ,लेकिन कोई दिशा नहीं है। आवेशों की एक प्रणाली के कारण होने वाली विभव को वोल्ट (<math>V</math>) में मापा जाता है।
आवेशों की एक प्रणाली के कारण होने वाली विभव एक अदिश राशि है, जिसका अर्थ है, कि इसमें परिमाण तो हैं ,लेकिन कोई दिशा नहीं है। आवेशों की एक प्रणाली के कारण होने वाली विभव को वोल्ट (<math>V</math>) में मापा जाता है।



Revision as of 11:13, 17 June 2024

Potential due to a system of charges


बिंदु आवेशों की प्रणाली में किसी भी स्थान जिसका एक दीये हुए संदर्भ वृत (आंग्ल भाषा में रेफ्रन्स फ्रेम : reference frame) के मूल से दूरी है ,पर विद्युत विभव , प्रणाली में प्रत्येक बिंदु आवेश के कारण उपजे व्यष्टि (व्यक्तिगत) विद्युत विभव के योग के समतुल्य होती है। यह तथ्य बिंदु आवेशों की प्रणाली की इस गणना में महत्वपूर्ण रूप है और इसे सरल बनाता है।सादिशों (वेक्टर ) का उपयोग कर विद्युत क्षेत्रों को जोड़ने की तुलना में विभव क्षेत्रों को जोड़ना (जो की एक आदिश प्रणाली है) सरल है।

विशेष रूप से

असतत बिंदु आवेश

संदर्भ वृत पर स्थितः किसी बिंदु पर असतत बिंदु आवेश के एक नियोजन का (सह) विभव बन जाती है,जिसकी गणना निम्नलिखित सूत्र से की जा सकती है:

जहाँ

   वह बिंदु है जिस पर विभव का मूल्यांकन किया जाता है;

   वह बिंदु है जिस पर शून्येतर आवेश होता है;

और

   बिंदु पर आवेश है।

सतत बिंदु आवेश

यदि संदर्भ वृत पर बिंदु आवेशों का नियोजित वितरण सतत है और जिसका प्रतिनिधत्व, एक गणितीय फलन से किया जा सकता है तो,ऐसे आवेश वितरण से उपजी विभवता को निम्नलिखित सूत्रों से गणित कीया जा सकता है :

,

जहाँ,* एक बिंदु है जिस पर क्षमता का मूल्यांकन किया जाता है ।

  • एक ऐसा क्षेत्र है जिसमें वे सभी बिंदु सम्मलित हैं जिन पर आवेश घनत्व शून्येतर है ।
  • , क्षेत्र के अंदर एक बिंदु है ।

और* बिंदु पर आवेश घनत्व है । आवेशों की एक प्रणाली के कारण होने वाली विभव एक अदिश राशि है, जिसका अर्थ है, कि इसमें परिमाण तो हैं ,लेकिन कोई दिशा नहीं है। आवेशों की एक प्रणाली के कारण होने वाली विभव को वोल्ट () में मापा जाता है।

अनुप्रयोग

आवेशों की एक प्रणाली के कारण होने वाली विभव का उपयोग, कई अलग-अलग अनुप्रयोगों में किया जाता है, जैसे एक संधारित्र की धारिता, आवेशों की एक प्रणाली के कारण विद्युत क्षेत्र और एक आवेश को एक बिंदु से दूसरे बिंदु तक ले जाने में किए गए कार्य की गणना करना।

यहां कुछ उदाहरण दिए गए हैं कि भौतिकी में आवेशों की प्रणाली के कारण संभावित विभव का उपयोग कैसे किया जाता है:

संधारित्र की धारिता संधारित्र की प्लेटों और प्लेटों के क्षेत्रफल के बीच संभावित अंतर से निर्धारित होती है।

आवेशों की एक प्रणाली के कारण विद्युत क्षेत्र की गणना विभव की ऋणात्मक प्रवणता लेकर की जा सकती है।