कोणीय आवर्धन: Difference between revisions
Listen
Line 30: | Line 30: | ||
कोणीय आवर्धन उपकरण में किसी दिए गए बिंदु से मापे जाने पर किसी वस्तु और उसकी छवि द्वारा बनाए गए कोणों के स्पर्शरेखा के अनुपात के समतुल्य होता है, जैसे आवर्धक और दूरबीन के साथ। | कोणीय आवर्धन उपकरण में किसी दिए गए बिंदु से मापे जाने पर किसी वस्तु और उसकी छवि द्वारा बनाए गए कोणों के स्पर्शरेखा के अनुपात के समतुल्य होता है, जैसे आवर्धक और दूरबीन के साथ। | ||
किसी प्रकाशकीय प्रणाली (ऑप्टिकल सिस्टम) में आवर्धन की मात्रा की कोई सैद्धांतिक सीमा नहीं है, लेकिन व्यावहारिक आवर्धन,उस प्रणाली की विभेदन शक्ति (रेसॉलविंग पावर) द्वारा सीमित है - यानी, छोटे कोणीय दूरी से अलग वस्तुओं की अलग-अलग छवियां बनाने की इसकी | किसी प्रकाशकीय प्रणाली (ऑप्टिकल सिस्टम) में आवर्धन की मात्रा की कोई सैद्धांतिक सीमा नहीं है, लेकिन व्यावहारिक आवर्धन,उस प्रणाली की विभेदन शक्ति (रेसॉलविंग पावर) द्वारा सीमित है - यानी, छोटे कोणीय दूरी से अलग वस्तुओं की अलग-अलग छवियां बनाने की इसकी क्षमता यह निर्धारित करती है की आवर्धन (अथवा संवर्धन) कर रही प्रकाशकीय प्रणाली वास्तविक वस्तु की छवि को,बिना विक्षुब्ध कीये किस सीमा तक आवर्धित (अथवा संवर्धित) कर सकती है । [ प्रायः सूक्ष्मदर्शी और दूरबीनों में उपयोग की जाने वाली आवर्धन की एक इकाई व्यास है, व्यास में आवर्धन वस्तु के रैखिक आयामों में वृद्धि के सांख्यिक मूल्य के समतुल्य होता है। | ||
== ध्यान रखने योग्य महत्वपूर्ण बिंदु == | == ध्यान रखने योग्य महत्वपूर्ण बिंदु == |
Revision as of 13:01, 30 June 2024
Angular Magnification
कोणीय आवर्धन एक अवधारणा है जो यह समझने में सुविधा करती है कि सूक्ष्मदर्शी (माइक्रोस्कोप) या दूरबीन (टेलिस्कोप) जैसे प्रकाशीय (ऑप्टिकल) उपकरण के माध्यम से देखने पर कोई वस्तु कितनी बड़ी या छोटी दिखाई देती है। यह सब इस बारे में है कि छवि रूप में कोई वस्तु कितनी मंडित ("ज़ूम इन":ZOOM IN) या खंडित ("ज़ूम आउट":ZOOM OUT) की जा रही है।
आवर्धन : आकार विस्तार
कोणीय आधार पर किसी वस्तु की छवि का आकार विस्तार,उस वस्तु के वास्तविक आकार विस्तार व उस वस्तु की उस उपकरण (नेत्र,कैमरा इत्यादी) जिसमें उस वस्तु की छवि बन रही है से दूरी पर निर्भर करता है।
उदाहरण के लिए
दूरबीनों के बारे में
जब दूरबीन से दृश्य दर्शन कीया जाता है, तो दूर की वस्तुओं को अधिक स्पष्ट और अधिक विस्तार से दिखती हैं। कोणीय आवर्धन इस वृद्धि को मापने में सुविधा करता है।
कोणीय आवर्धन (M) का सूत्र
जहाँ:
कोणीय आवर्धन है
आवर्धक उपकरण द्वारा बनी छवि द्वारा बनाया गया कोण है (छवि कितनी बड़ी दिखाई देती है: वस्तु की कोणीय छवि का माप )
आवर्धक करने वाले उपकरण के बिना देखी गई वस्तु द्वारा बनाया गया कोण है ( आवर्धन हीन नेत्रों द्वारा वस्तु के आकार में संवर्धन : कितनी बड़ी दिखाई देती है: वस्तु का साधारण माप )
यदि कोणीय आवर्धन (> 1) से अधिक है, तो इसका तात्पर्य यह है कि उपकरण के माध्यम से देखने पर वस्तु बड़ी दिखाई देती है। प्रायः ,यह सूक्ष्मदर्शी के संदर्भ में होता है, जहां विस्तृत अवलोकन के लिए छोटी वस्तुओं को बड़ा करना होता है। यदि कोणीय आवर्धन से कम है, तो उपकरण से देखने पर वस्तु छोटी दिखाई देती है। उदाहरण के लिए, प्रायः दूरबीन (टेलीस्कोप) को दूर की वस्तुओं को छोटा दिखाते हैं ताकि उन्हें अधिक आसानी से देखा जा सके।
यहाँ यह भी ज्ञात रखना आवयशक है की अधिकांशतः मानव नेत्र, जब किसी वस्तु की छवि देखते हैं, तो अधिकांशतः वह छवि कोणीय छवि होती है ।
कोणीय आवर्धन
कोणीय आवर्धन उपकरण में किसी दिए गए बिंदु से मापे जाने पर किसी वस्तु और उसकी छवि द्वारा बनाए गए कोणों के स्पर्शरेखा के अनुपात के समतुल्य होता है, जैसे आवर्धक और दूरबीन के साथ।
किसी प्रकाशकीय प्रणाली (ऑप्टिकल सिस्टम) में आवर्धन की मात्रा की कोई सैद्धांतिक सीमा नहीं है, लेकिन व्यावहारिक आवर्धन,उस प्रणाली की विभेदन शक्ति (रेसॉलविंग पावर) द्वारा सीमित है - यानी, छोटे कोणीय दूरी से अलग वस्तुओं की अलग-अलग छवियां बनाने की इसकी क्षमता यह निर्धारित करती है की आवर्धन (अथवा संवर्धन) कर रही प्रकाशकीय प्रणाली वास्तविक वस्तु की छवि को,बिना विक्षुब्ध कीये किस सीमा तक आवर्धित (अथवा संवर्धित) कर सकती है । [ प्रायः सूक्ष्मदर्शी और दूरबीनों में उपयोग की जाने वाली आवर्धन की एक इकाई व्यास है, व्यास में आवर्धन वस्तु के रैखिक आयामों में वृद्धि के सांख्यिक मूल्य के समतुल्य होता है।
ध्यान रखने योग्य महत्वपूर्ण बिंदु
कोणीय आवर्धन वास्तव में वस्तु के भौतिक आकार को नहीं बदलता है। यह सब इस बारे में है कि वस्तु नग्न आंखों की तुलना में कितनी बड़ी या छोटी दिखाई देती है।
सरल शब्दों में
कोणीय आवर्धन यह बताता है कि दूरबीन या माइक्रोस्कोप, जैसा ऑप्टिकल उपकरण, किसी वस्तु को कितना बड़ा या छोटा दिखाता है। इसकी गणना वस्तु और उसकी छवि द्वारा बनाए गए कोणों की तुलना करके की जाती है, और यह वस्तु के वास्तविक आकार को नहीं बदलता है।