क्रांतिक कोण: Difference between revisions
Listen
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
क्रांतिक कोण, आपतन कर रही प्रकाश किरण का वह सबसे छोटा कोण है, जिस पर पूर्ण प्रतिबिंब उत्पन्न होता है , इस परिभाषा के समकक्ष प्रकाशीय आपतन की घटना को संदर्भित करती एक परिभाषा, यह भी है की आपंतन कर रही प्रकाश किरणों के मध्य बन रहे कोणों में, क्रांतिक कोण उस सबसे बड़े कोण का परिचायक है, जिसके लिए एक अपवर्तित किरण खींची जा सकती है। एकल अपवर्तक सूचकांक <math>n1</math> से युक्त किसी "आंतरिक" माध्यम से एकल अपवर्तक सूचकांक <math>n2</math> युक्त "बाह्य" माध्यम पर आपतित प्रकाश तरंगों के लिए, क्रांतिक कोण <math>\theta_c = \arcsin ( n_2 / n_1 ),</math>द्वारा दिया जाता है, और परिभाषित किया गया है यदि <math>n_2 \leq n_1,</math>। कुछ अन्य प्रकार की तरंगों के लिए, अपवर्तक सूचकांकों को संदर्भित न कर कर ,प्रसार वेग के संदर्भ में सोचना अधिक सुविधाजनक है। वेग के संदर्भ में क्रांतिक कोण की व्याख्या अधिक सामान्य है। | क्रांतिक कोण, आपतन कर रही प्रकाश किरण का वह सबसे छोटा कोण है, जिस पर पूर्ण प्रतिबिंब उत्पन्न होता है , इस परिभाषा के समकक्ष प्रकाशीय आपतन की घटना को संदर्भित करती एक परिभाषा, यह भी है की आपंतन कर रही प्रकाश किरणों के मध्य बन रहे कोणों में, क्रांतिक कोण उस सबसे बड़े कोण का परिचायक है, जिसके लिए एक अपवर्तित किरण खींची जा सकती है। एकल अपवर्तक सूचकांक <math>n1</math> से युक्त किसी "आंतरिक" माध्यम से एकल अपवर्तक सूचकांक <math>n2</math> युक्त "बाह्य" माध्यम पर आपतित प्रकाश तरंगों के लिए, क्रांतिक कोण <math>\theta_c = \arcsin ( n_2 / n_1 ),</math>द्वारा दिया जाता है, और परिभाषित किया गया है यदि <math>n_2 \leq n_1,</math>। कुछ अन्य प्रकार की तरंगों के लिए, अपवर्तक सूचकांकों को संदर्भित न कर कर ,प्रसार वेग के संदर्भ में सोचना अधिक सुविधाजनक है। वेग के संदर्भ में क्रांतिक कोण की व्याख्या अधिक सामान्य है। | ||
जब एक तरंगाग्र एक माध्यम से दूसरे माध्यम में अपवर्तित होता है, तो तरंगाग्र के आपतित (आने वाले) और अपवर्तित (बाहर जाने वाले) भाग अपवर्तक सतह (इंटरफ़ेस) पर अभिलंबित रेखा पर मिलते हैं। यदि यह मान लीया जाए कि यह रेखा, जिसे साथ दीये गए चित्र में <math>L </math> द्वारा निरूपित किया गया है, सतह पर <math>u</math> वेग से चलायमान है, जहां <math>u </math> को <math>L</math> के अभिलंबित रूप से मापा जाता है (साथ में दीये चित्र को देखें )। घटना और अपवर्तित तरंगाग्रों को सामान्य वेगों (क्रमशः), <math>v_1</math>और <math>v_2</math> के साथ प्रसारित होने देने और उन्हें, इंटरफेस के सापेक्ष डायहेड्रल | जब एक तरंगाग्र एक माध्यम से दूसरे माध्यम में अपवर्तित होता है, तो तरंगाग्र के आपतित (आने वाले) और अपवर्तित (बाहर जाने वाले) भाग अपवर्तक सतह (इंटरफ़ेस) पर अभिलंबित रेखा पर मिलते हैं। यदि यह मान लीया जाए कि यह रेखा, जिसे साथ दीये गए चित्र में <math>L </math> द्वारा निरूपित किया गया है, सतह पर <math>u</math> वेग से चलायमान है, जहां <math>u </math> को <math>L</math> के अभिलंबित रूप से मापा जाता है (साथ में दीये चित्र को देखें )। घटना और अपवर्तित तरंगाग्रों को सामान्य वेगों (क्रमशः), <math>v_1</math>और <math>v_2</math> के साथ प्रसारित होने देने और उन्हें,अंतरापृष्ठ (इंटरफेस) के सापेक्ष द्वितल कोण (डायहेड्रल ऐंगल) <math>\theta_{1}</math> और <math>\theta_{2}</math>(क्रमशः) बनाने दें। ज्यामिति से, <math>v_1</math>आपतित तरंग की सामान्य दिशा में <math>u</math> का घटक है, ताकि <math>v_{1}=u\sin \theta _{1}</math>,इसी प्रकार,<math>v_{2}=u\sin \theta _{2},</math> प्रत्येक समीकरण को <math>1/u</math> के लिए हल करने और परिणामों को समतुल्य करने पर, तरंगों के लिए अपवर्तन का सामान्य नियम: | ||
<math>\frac{\sin\theta_1}{v_1} = \frac{\sin\theta_2}{v_2}\,</math> | |||
प्राप्त कीया जा सकता है। | |||
लेकिन दो तलों के बीच का द्विफलकीय कोण, उनके अभिलंबों के बीच का कोण भी होता है। तो <math>\theta_1 </math>आपतित तरंगाग्र के अभिलंब और अंतरापृष्ठ (इंटरफ़ेस) के अभिलंब के बीच का कोण है, जबकि <math>\theta_2 </math>अपवर्तित तरंगाग्र के अभिलंब और अंतरापृष्ठ (इंटरफ़ेस) के अभिलंब के बीच का कोण है; और Eq. (1) हमें बताता है कि इन कोणों की ज्याएँ संबंधित वेगों के समान अनुपात में हैं | |||
इस परिणाम में "स्नेल का नियम" का रूप है, सिवाय इसके कि हमने अभी तक यह नहीं कहा है कि वेगों का अनुपात स्थिर है, न ही आपतन और अपवर्तन के कोणों (ऊपर θi और θt कहा जाता है) के साथ θ1 और θ2 की पहचान की है। हालाँकि, अगर अब हम मानते हैं कि मीडिया के गुण आइसोट्रोपिक (दिशा से स्वतंत्र) हैं, तो दो और निष्कर्ष निकलते हैं: पहला, दो वेग, और इसलिए उनका अनुपात, उनकी दिशाओं से स्वतंत्र हैं; और दूसरा, तरंग-सामान्य दिशाएं किरण दिशाओं के साथ मेल खाती हैं, ताकि θ1 और θ2 ऊपर बताए अनुसार आपतन और अपवर्तन के कोणों के साथ मेल खाते हैं। | |||
प्रकाशिकी में क्रांतिक कोण एक महत्वपूर्ण अवधारणा है जो दो अलग-अलग सामग्रियों के बीच की सीमा पर प्रकाश के व्यवहार के तरीके से संबंधित है। यह आपतन का वह कोण है जिस पर अधिक सघन माध्यम से कम सघन माध्यम में यात्रा करते समय प्रकाश अपवर्तित (मुड़े हुए) से पूरी तरह से आंतरिक रूप से परावर्तित हो जाता है। | प्रकाशिकी में क्रांतिक कोण एक महत्वपूर्ण अवधारणा है जो दो अलग-अलग सामग्रियों के बीच की सीमा पर प्रकाश के व्यवहार के तरीके से संबंधित है। यह आपतन का वह कोण है जिस पर अधिक सघन माध्यम से कम सघन माध्यम में यात्रा करते समय प्रकाश अपवर्तित (मुड़े हुए) से पूरी तरह से आंतरिक रूप से परावर्तित हो जाता है। |
Revision as of 15:20, 11 July 2024
Critical Angle
क्रांतिक कोण, आपतन कर रही प्रकाश किरण का वह सबसे छोटा कोण है, जिस पर पूर्ण प्रतिबिंब उत्पन्न होता है , इस परिभाषा के समकक्ष प्रकाशीय आपतन की घटना को संदर्भित करती एक परिभाषा, यह भी है की आपंतन कर रही प्रकाश किरणों के मध्य बन रहे कोणों में, क्रांतिक कोण उस सबसे बड़े कोण का परिचायक है, जिसके लिए एक अपवर्तित किरण खींची जा सकती है। एकल अपवर्तक सूचकांक से युक्त किसी "आंतरिक" माध्यम से एकल अपवर्तक सूचकांक युक्त "बाह्य" माध्यम पर आपतित प्रकाश तरंगों के लिए, क्रांतिक कोण द्वारा दिया जाता है, और परिभाषित किया गया है यदि । कुछ अन्य प्रकार की तरंगों के लिए, अपवर्तक सूचकांकों को संदर्भित न कर कर ,प्रसार वेग के संदर्भ में सोचना अधिक सुविधाजनक है। वेग के संदर्भ में क्रांतिक कोण की व्याख्या अधिक सामान्य है।
जब एक तरंगाग्र एक माध्यम से दूसरे माध्यम में अपवर्तित होता है, तो तरंगाग्र के आपतित (आने वाले) और अपवर्तित (बाहर जाने वाले) भाग अपवर्तक सतह (इंटरफ़ेस) पर अभिलंबित रेखा पर मिलते हैं। यदि यह मान लीया जाए कि यह रेखा, जिसे साथ दीये गए चित्र में द्वारा निरूपित किया गया है, सतह पर वेग से चलायमान है, जहां को के अभिलंबित रूप से मापा जाता है (साथ में दीये चित्र को देखें )। घटना और अपवर्तित तरंगाग्रों को सामान्य वेगों (क्रमशः), और के साथ प्रसारित होने देने और उन्हें,अंतरापृष्ठ (इंटरफेस) के सापेक्ष द्वितल कोण (डायहेड्रल ऐंगल) और (क्रमशः) बनाने दें। ज्यामिति से, आपतित तरंग की सामान्य दिशा में का घटक है, ताकि ,इसी प्रकार, प्रत्येक समीकरण को के लिए हल करने और परिणामों को समतुल्य करने पर, तरंगों के लिए अपवर्तन का सामान्य नियम:
प्राप्त कीया जा सकता है।
लेकिन दो तलों के बीच का द्विफलकीय कोण, उनके अभिलंबों के बीच का कोण भी होता है। तो आपतित तरंगाग्र के अभिलंब और अंतरापृष्ठ (इंटरफ़ेस) के अभिलंब के बीच का कोण है, जबकि अपवर्तित तरंगाग्र के अभिलंब और अंतरापृष्ठ (इंटरफ़ेस) के अभिलंब के बीच का कोण है; और Eq. (1) हमें बताता है कि इन कोणों की ज्याएँ संबंधित वेगों के समान अनुपात में हैं
इस परिणाम में "स्नेल का नियम" का रूप है, सिवाय इसके कि हमने अभी तक यह नहीं कहा है कि वेगों का अनुपात स्थिर है, न ही आपतन और अपवर्तन के कोणों (ऊपर θi और θt कहा जाता है) के साथ θ1 और θ2 की पहचान की है। हालाँकि, अगर अब हम मानते हैं कि मीडिया के गुण आइसोट्रोपिक (दिशा से स्वतंत्र) हैं, तो दो और निष्कर्ष निकलते हैं: पहला, दो वेग, और इसलिए उनका अनुपात, उनकी दिशाओं से स्वतंत्र हैं; और दूसरा, तरंग-सामान्य दिशाएं किरण दिशाओं के साथ मेल खाती हैं, ताकि θ1 और θ2 ऊपर बताए अनुसार आपतन और अपवर्तन के कोणों के साथ मेल खाते हैं।
प्रकाशिकी में क्रांतिक कोण एक महत्वपूर्ण अवधारणा है जो दो अलग-अलग सामग्रियों के बीच की सीमा पर प्रकाश के व्यवहार के तरीके से संबंधित है। यह आपतन का वह कोण है जिस पर अधिक सघन माध्यम से कम सघन माध्यम में यात्रा करते समय प्रकाश अपवर्तित (मुड़े हुए) से पूरी तरह से आंतरिक रूप से परावर्तित हो जाता है।
गणितीय स्पष्टीकरण
हम स्नेल के नियम का उपयोग करके क्रांतिक कोण को समझ सकते हैं, जो आपतन और अपवर्तन कोण (i और r) को दो माध्यमों के अपवर्तनांक (n1 और n2) से जोड़ता है।
n1sini=n2sinr.
जब प्रकाश अधिक घने माध्यम (उच्च अपवर्तक सूचकांक, n1n1) से कम घने माध्यम (कम अपवर्तक सूचकांक, n2n2) की ओर यात्रा करता है, तो घटना का एक विशिष्ट कोण होता है जिसके परे कुल आंतरिक प्रतिबिंब होता है।
क्रांतिक कोण सूत्र
क्रांतिक कोण (सी) की गणना समीकरण का उपयोग करके की जा सकती है:
sinC=n2/n1,
यह समीकरण आपको क्रांतिक कोण का मान देता है जिस पर प्रकाश 90 डिग्री के कोण पर अपवर्तित होगा (अर्थात यह दो मीडिया के बीच की सीमा के साथ यात्रा करता है)।
कुल आंतरिक प्रतिबिंब
जब आपतन कोण क्रांतिक कोण से अधिक होता है, तो कुछ आकर्षक घटित होता है - सारा प्रकाश वापस सघन माध्यम में परावर्तित हो जाता है। इस घटना को पूर्ण आंतरिक परावर्तन कहा जाता है। कोई भी प्रकाश दोनों माध्यमों के बीच की सीमा से होकर नहीं गुजरता; यह सब आंतरिक रूप से प्रतिबिंबित होता है।
व्यावहारिक अनुप्रयोगों
पूर्ण आंतरिक परावर्तन के व्यावहारिक अनुप्रयोग हैं:
- फाइबर ऑप्टिक्स: कुल आंतरिक परावर्तन के कारण प्रकाश सिग्नल ऑप्टिकल फाइबर के अंदर उछलते हैं, जिससे उच्च गति डेटा ट्रांसमिशन संभव हो जाता है।
- मृगतृष्णा: पृथ्वी के वायुमंडल में, पूर्ण आंतरिक प्रतिबिंब मृगतृष्णा पैदा कर सकता है, जहां वस्तुएं अपनी वास्तविक स्थिति से विस्थापित दिखाई देती हैं।
- परावर्तक प्रिज्म: विशिष्ट कोण वाले प्रिज्म अपने अंदर प्रकाश को कई बार प्रतिबिंबित कर सकते हैं, जिसका उपयोग दूरबीन और पेरिस्कोप में किया जाता है।
याद रखें
क्रांतिक कोण आपतन का वह कोण है जो पूर्ण आंतरिक परावर्तन की ओर ले जाता है। यह शामिल सामग्रियों के अपवर्तक सूचकांकों से प्रभावित होता है और हमें यह समझने में मदद करता है कि प्रकाश विभिन्न पदार्थों के बीच की सीमाओं पर कैसे व्यवहार करता है।