द्विघातीय समीकरण: Difference between revisions
(content added) |
(added content) |
||
Line 1: | Line 1: | ||
द्विघातीय समीकरण को द्वितीय घात के बहुपद समीकरण के रूप में परिभाषित किया जा सकता है, जिसका अर्थ है कि इसमें कम से कम एक पद वर्गाकार होता है। इसे द्विघातीय समीकरण भी कहा जाता है। द्विघातीय समीकरण का सामान्य रूप है: | |||
<math>ax^2+bx+c=0</math> | |||
जहाँ <math>x</math> एक अज्ञात चर है और <math>a</math>, <math>b</math>, और <math>c</math> वास्तविक गुणांक हैं। उदाहरण के लिए, <math>x^2+2x+1</math> एक द्विघात या द्विघातीय समीकरण है। यहाँ, <math>a\neq0</math> क्योंकि यदि यह शून्य के समान है तो समीकरण अब द्विघातीय नहीं रहेगा और यह एक रैखिक समीकरण बन जाएगा, जैसे: | |||
<math>bx+c=0</math> | |||
अत: इस समीकरण को द्विघात समीकरण नहीं कहा जा सकता। | |||
पदों <math>a</math>, <math>b</math>, और <math>c</math> को द्विघात गुणांक भी कहा जाता है। | |||
हमें पहले ही द्विघातीय समीकरणों के बारे में जानकारी है और हमने उनको वास्तविक संख्याओं के समुच्चय में उन स्थितियों में हल किया है जहाँ विविक्तकर <math>\geq0 </math> है। अब | |||
समीकरण के बारे में विचार करते हैं: | |||
<math>ax^2+bx+c=0</math> जिसमें <math>a</math>, <math>b</math>, और <math>c</math> वास्तविक गुणांक हैं और <math>a\neq0</math> | |||
मान लीजिए कि <math>b^2-4ac<0</math> | |||
हम जानते हैं कि हम सम्मिश्र संख्याओं के समुच्चय में ऋणात्मक वास्तविक संख्याओं के वर्गमूल निकाल सकते हैं। इसलिए उपर्युक्त समीकरण के हल सम्मिश्र संख्याओं के समुच्चय में हैं जोकि | |||
द्वारा प्राप्त होते हैं। | <math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}=\frac{-b\pm\sqrt{4ac-b^2}i}{2a}</math> द्वारा प्राप्त होते हैं। | ||
-टिप्पणी यहाँ पर, कुछ लोग यह जानने के लिए उत्सुक होंगे, कि किसी समीकरण में कितने मूल होंगे? इस संदर्भ में निम्नलिखित प्रमेय को उल्लेख (बिना उपपत्ति) के किया गया है जिसे 'बीजगणित की मूल प्रमेय' के रूप में जाना जाता है। | -टिप्पणी यहाँ पर, कुछ लोग यह जानने के लिए उत्सुक होंगे, कि किसी समीकरण में कितने मूल होंगे? इस संदर्भ में निम्नलिखित प्रमेय को उल्लेख (बिना उपपत्ति) के किया गया है जिसे 'बीजगणित की मूल प्रमेय' के रूप में जाना जाता है। |
Revision as of 14:11, 26 October 2024
द्विघातीय समीकरण को द्वितीय घात के बहुपद समीकरण के रूप में परिभाषित किया जा सकता है, जिसका अर्थ है कि इसमें कम से कम एक पद वर्गाकार होता है। इसे द्विघातीय समीकरण भी कहा जाता है। द्विघातीय समीकरण का सामान्य रूप है:
जहाँ एक अज्ञात चर है और , , और वास्तविक गुणांक हैं। उदाहरण के लिए, एक द्विघात या द्विघातीय समीकरण है। यहाँ, क्योंकि यदि यह शून्य के समान है तो समीकरण अब द्विघातीय नहीं रहेगा और यह एक रैखिक समीकरण बन जाएगा, जैसे:
अत: इस समीकरण को द्विघात समीकरण नहीं कहा जा सकता।
पदों , , और को द्विघात गुणांक भी कहा जाता है।
हमें पहले ही द्विघातीय समीकरणों के बारे में जानकारी है और हमने उनको वास्तविक संख्याओं के समुच्चय में उन स्थितियों में हल किया है जहाँ विविक्तकर है। अब
समीकरण के बारे में विचार करते हैं:
जिसमें , , और वास्तविक गुणांक हैं और
मान लीजिए कि
हम जानते हैं कि हम सम्मिश्र संख्याओं के समुच्चय में ऋणात्मक वास्तविक संख्याओं के वर्गमूल निकाल सकते हैं। इसलिए उपर्युक्त समीकरण के हल सम्मिश्र संख्याओं के समुच्चय में हैं जोकि
द्वारा प्राप्त होते हैं।
-टिप्पणी यहाँ पर, कुछ लोग यह जानने के लिए उत्सुक होंगे, कि किसी समीकरण में कितने मूल होंगे? इस संदर्भ में निम्नलिखित प्रमेय को उल्लेख (बिना उपपत्ति) के किया गया है जिसे 'बीजगणित की मूल प्रमेय' के रूप में जाना जाता है।
“एक बहुपद समीकरण का कम से कम एक मूल होता है" ।
इस प्रमेय के फलस्वरूप हम निम्नलिखित महत्त्वपूर्ण परिणाम पर पहँचते हैं।
44
"" घात की एक बहुपद समीकरण में मूल होते हैं। '
n
""