वास्तविक फलनों का बीजगणित: Difference between revisions

From Vidyalayawiki

(ad)
(ad)
Line 16: Line 16:
(ii) '''एक वास्तविक फलन में से दूसरे को घटाना''' मान लीजिए कि <math>f:X\rightarrow R</math> तथा <math>g:X\rightarrow R  
(ii) '''एक वास्तविक फलन में से दूसरे को घटाना''' मान लीजिए कि <math>f:X\rightarrow R</math> तथा <math>g:X\rightarrow R  
</math> कोई दो वास्तविक फलन हैं, जहाँ <math>X\subset R
</math> कोई दो वास्तविक फलन हैं, जहाँ <math>X\subset R
</math> तब हम (f g) : XR को सभी * EX के लिए (/-g) (x) = f(x) - 8 (x), द्वारा परिभाषित करते हैं।  
</math> तब हम <math>(f-g):X\rightarrow R</math> को, सभी <math>x\in X</math> के लिए <math>(f-g)(x)=f(x)-g(x)</math>, द्वारा परिभाषित करते हैं।  


(iii) एक अदिश से गुणा मान लीजिए कि / : X R एक वास्तविक मान फलन है तथा एक अदिश है। यहाँ अदिश से हमारा अभिप्राय किसी वास्तविक संख्या से है। तब गुणनफल af, X से R में एक फलन है, जो (af) (x) = a f (x),xe X से परिभाषित होता है।  
(iii) '''एक अदिश से गुणा''' मान लीजिए कि <math>f:X\rightarrow R</math> एक वास्तविक मान फलन है तथा <math>\alpha</math> एक अदिश है। यहाँ अदिश से हमारा अभिप्राय किसी वास्तविक संख्या से है। तब गुणनफल <math>\alpha f</math>, <math>X </math> से <math>R</math> में एक फलन है, जो <math>(\alpha f)(x)=\alpha f(x)</math>, <math>x\in X</math> से परिभाषित होता है।  


(iv) दो वास्तविक फलनों का गुणन दो वास्तविक फलनों f XR तथा g: X→R का गुणनफल (या गुणा) एक फलन fg: X R है, जो सभी (fg) (x) = f(x) g(x), x X द्वारा परिभाषित है। इसे बिंदुश: गुणन भी कहते हैं।  
(iv) '''दो वास्तविक फलनों का गुणन''' दो वास्तविक फलनों <math>f:X\rightarrow R</math> तथा <math>g:X\rightarrow R
</math> का गुणनफल (या गुणा) एक फलन <math>fg:X\rightarrow R </math> है, जो सभी <math>(fg)(x)=f(x)g(x)</math>, <math>x\in X</math> द्वारा परिभाषित है। इसे बिंदुश: गुणन भी कहते हैं।  


(v) दो वास्तविक फलनों का भागफल मान लीजिए कि f तथा g XR द्वारा परिभाषित,  
(v) '''दो वास्तविक फलनों का भागफल''' मान लीजिए कि <math>f</math> तथा <math>g</math> ,<math>X\rightarrow R</math> द्वारा परिभाषित,  


दो वास्तविक फलन हैं, जहाँ XCRf का g से भागफल, जिसे  
दो वास्तविक फलन हैं, जहाँ <math>X\subset R
</math>। <math>f</math> का <math>g</math> से भागफल, जिसे <math>\frac{f}{g}</math> से निरूपित करते हैं, एक फलन


f
है, जो सभी <math>x\in X</math> जहाँ <math>g(x)\neq 0</math>, के लिए, <math>\left ( \frac{f}{g} \right )(x)=\frac{f(x)}{g(x)}</math> द्वारा परिभाषित है।  
 
g
 
से निरूपित करते हैं, एक फलन
 
है, जो सभीxe X जहाँ g(x) = 0, के लिए,  
 
((t) = f(x) g(x)  
 
द्वारा परिभाषित है।  


उदाहरण 16 मान लीजिए कि f(x) =  
उदाहरण 16 मान लीजिए कि f(x) =  

Revision as of 10:42, 9 November 2024


परिचय

वास्तविक फलनों का बीजगणित वास्तविक-मूल्यवान फलनों पर निष्पादित बीजीय संक्रियाओं का अध्ययन है, जैसे जोड़, घटाव, गुणा और भाग।

इस अनुच्छेद में, हम सीखेंगे कि किस प्रकार दो वास्तविक फलनों को जोड़ा जाता है, एक वास्तविक फलन को दूसरे में से घटाया जाता है, एक वास्तविक फलन को किसी अदिश (यहाँ आदिश का अभिप्राय वास्तविक संख्या से है) से गुणा किया जाता है, दो वास्तविक फलनों का गुणा किया जाता है तथा एक वास्तविक फलन को दूसरे से भाग दिया जाता है।

(i) दो वास्तविक फलनों का योग मान लीजिए कि तथा वास्तविक फलन हैं, जहाँ तब हम को, सभी के लिए, द्वारा परिभाषित करते हैं।

XR तथा g XR कोई दो

(ii) एक वास्तविक फलन में से दूसरे को घटाना मान लीजिए कि तथा कोई दो वास्तविक फलन हैं, जहाँ तब हम को, सभी के लिए , द्वारा परिभाषित करते हैं।

(iii) एक अदिश से गुणा मान लीजिए कि एक वास्तविक मान फलन है तथा एक अदिश है। यहाँ अदिश से हमारा अभिप्राय किसी वास्तविक संख्या से है। तब गुणनफल , से में एक फलन है, जो , से परिभाषित होता है।

(iv) दो वास्तविक फलनों का गुणन दो वास्तविक फलनों तथा का गुणनफल (या गुणा) एक फलन है, जो सभी , द्वारा परिभाषित है। इसे बिंदुश: गुणन भी कहते हैं।

(v) दो वास्तविक फलनों का भागफल मान लीजिए कि तथा , द्वारा परिभाषित,

दो वास्तविक फलन हैं, जहाँ का से भागफल, जिसे से निरूपित करते हैं, एक फलन

है, जो सभी जहाँ , के लिए, द्वारा परिभाषित है।

उदाहरण 16 मान लीजिए कि f(x) =

तथा g (x) = 2x +

वास्तविक फलन हैं।

(f + g) (x), (f-g) (x), (fg) (x),

ज्ञात कीजिए।


हल स्पष्टतः

(f+g) (x) = x2+2x+1, (f−g) (x) = x2 - 2x-1,

(fg) (x) = x2 (2x+1

(x) +x,

=

x #

8

2x+1

2

उदाहरण 17 मान लीजिए कि f(x) = VX तथा g(x) = x ॠणेत्तर वास्तविक संख्याओं के लिए

परिभाषित दो फलन हैं, तो ( + g ) (x), (f - g) (x) (fg) (x) और

8

(x) ज्ञात कीजिए ।

हल यहाँ हमें निम्नलिखित परिणाम मिलते हैं:

(f+g) (x) = √x+x, (f− g) (x) = √x

-

-x.

(fg)

(8) x = √x(x)=x2 + (4)∞) = √x xxx0

2,

X