गणितीय आगमन का सिद्धांत: Difference between revisions

From Vidyalayawiki

No edit summary
(added content)
Line 22: Line 22:
(a) प्रथम टाइल गिरती है, और  
(a) प्रथम टाइल गिरती है, और  


(b) उस घटना में जब कोई टाइल गिरती है, उसकी उत्तरवर्ती अनिवार्यतः गिरती है। यही गणितीय आगमन सिद्धांत का आधार है।  
(b) उस घटना में जब कोई टाइल गिरती है, उसकी उत्तरवर्ती अनिवार्यतः गिरती है। यही गणितीय आगमन सिद्धांत का आधार है।  


हम जानते हैं कि प्राकृत संख्याओं का समुच्चय N वास्तविक संख्याओं का विशेष क्रमित उपसमुच्चय है। वास्तव में, R का सबसे छोटा उपसमुच्चय N है, जिसमें निम्नलिखित गुण हैं:


एक समुच्चय S आगमनिक समुच्चय (Inductive set) कहलाता है यदि 1E S और x + 1 ∈ S जब कभी.x E S. क्योंकि N, जो कि एक आगमनिक समुच्चय है, R का सबसे छोटा उपसमुच्चय है, परिणामत: R के किसी भी ऐसे उपसमुच्चय में जो आगमनिक है, N अनिवार्य रूप से समाहित होता है।


दृष्टांत
मान लीजिए कि हम प्राकृत संख्याओं 1, 2, 3, 1, के योग के लिए सूत्र प्राप्त करना चाहते हैं अर्थात् एक सूत्र जो कि " = 3 के लिए 1 + 2 + 3 का मान देता है, " = 4 के लिए 1+2+3+4 का मान देता है इत्यादि। और मान लीजिए कि हम किसी प्रकार से यह विश्वास करने के लिए प्रेरित होते n (n+1)
हैं कि सूत्र 1+2+3+...+ n =
- सही है।
2
n
यह सूत्र वास्तव में कैसे सिद्ध किया जा सकता है? हम निश्चित ही 1 के इच्छानुसार चाहे गए, धन पूर्णांक मानों के लिए कथन को सत्यापित कर सकते हैं, किंतु इस प्रक्रिया का मान के सभी मानों के लिए सूत्र को सिद्ध नहीं कर सकती है। इसके लिए एक ऐसी क्रिया श्रृंखला की आवश्यकता है, जिसका प्रभाव इस प्रकार का हो कि एक बार किसी धन पूर्णांक के लिए सूत्र के सिद्ध हो जाने के बाद आगामी धन पूर्णांकों के लिए सूत्र निरंतर अपने आप सिद्ध हो जाता है। इस प्रकार की क्रिया श्रृंखला को गणितीय आगमन विधि द्वारा उत्पन्न समझा जा सकता है।
Induction
गणित में आगमन का उपयोग प्रमाण और निष्कर्ष निकालने के लिए किया जाता है जो गणितीय प्रमेयों और उदाहरणों को समझने में मदद करता है। इन NCERT समाधान कक्षा 11 गणित अध्याय 4 गणितीय आगमन के सिद्धांत में, गणितीय आगमन के विभिन्न गुणों और अवधारणाओं को विस्तार से समझाया गया है जो सैद्धांतिक गणित का आधार बनते हैं।
इस प्रकार संक्षेप में निगमन एक प्रक्रिया है जिसमें एक कथन सिद्ध करने को दिया जाता है, जिसे गणित में प्राय: एक अनुमानित कथन (कंजेक्चर) अथवा प्रमेय कहते हैं, तर्क संगत निगमन के चरण प्राप्त किए जाते हैं और एक उपपत्ति स्थापित की जा सकती है, अथवा नहीं की जा सकती है, अर्थात् निगमन व्यापक स्थिति से विशेष स्थिति प्राप्त करने का अनुप्रयोग है।
निगमन के विपरीत, आगमन तर्क प्रत्येक स्थिति के अध्ययन पर आधारित होता है तथा इसमें प्रत्येक एवं हर संभव स्थिति को ध्यान में रखते हुए घटनाओं के निरीक्षण द्वारा एक अनुमानित कथन विकसित किया जाता है। इसको गणित में प्रायः प्रयोग किया जाता है तथा वैज्ञानिक चिंतन, जहाँ आँकड़ों का संग्रह तथा विशलेषण मानक होता है, का यह मुख्य आधार है। इस प्रकार, सरल भाषा में हम कह सकते हैं कि आगमन शब्द का अर्थ विशिष्ट स्थितियों या तथ्यों से व्यापकीकरण करने से है।
हम जानते हैं कि [[प्राकृत संख्याएँ|प्राकृत संख्याओं]] का समुच्चय
एक समुच्चय S आगमनिक समुच्चय (Inductive set) कहलाता है यदि 1E S और x + 1 ∈ S जब कभी.x E S. क्योंकि N, जो कि एक आगमनिक समुच्चय है, R का सबसे छोटा उपसमुच्चय है, परिणामत: R के किसी भी ऐसे उपसमुच्चय में जो आगमनिक है, N अनिवार्य रूप से समाहित होता है।
[[Category:गणितीय आगमन का सिद्धांत]][[Category:कक्षा-11]][[Category:गणित]]
[[Category:गणितीय आगमन का सिद्धांत]][[Category:कक्षा-11]][[Category:गणित]]


[[Category:गणितीय आगमन का सिद्धांत]][[Category:कक्षा-11]][[Category:गणित]]
[[Category:गणितीय आगमन का सिद्धांत]][[Category:कक्षा-11]][[Category:गणित]]

Revision as of 22:54, 10 November 2024

परिचय

गणितीय चिंतन का एक आधारभूत सिद्धांत निगमनिक तर्क है। तर्कशास्त्र के अध्ययन से उद्धृत एक अनौपचारिक और निगमनिक तर्क का उदाहरण तीन कथनों में व्यक्त तर्क है:-

(a) सुकरात एक मनुष्य है।

(b) सभी मनुष्य मरणशील हैं, इसलिए,

(c) सुकरात मरणशील है।

यदि कथन (a) और (b) सत्य हैं, तो (c) की सत्यता स्थापित है। इस सरल उदाहरण को गणितीय बनाने के लिए हम लिख सकते हैं।

(i) आठ दो से भाज्य है।

(ii) दो से भाज्य कोई संख्या सम संख्या है, इसलिए,

(iii) आठ एक सम संख्या है।

गणित में, हम सम्पूर्ण आगमन का एक रूप जिसे गणितीय आगमन कहते हैं, प्रयुक्त करते हैं। गणितीय आगमन सिद्धांत के मूल को समझने के लिए, कल्पना कीजिए कि एक पतली आयताकार टाइलों का समूह एक सिरे पर रखा है, जैसे चित्र-1 में प्रदर्शित है।

जब प्रथम टाइल को निर्दिष्ट दिशा में धक्का दिया जाता है तो सभी टाइलें गिर जाएँगी । पूर्णत: सुनिश्चित होने के लिए कि सभी टाइलें गिर जाएँगी, इतना जानना पर्याप्त है कि

(a) प्रथम टाइल गिरती है, और

(b) उस घटना में जब कोई टाइल गिरती है, उसकी उत्तरवर्ती अनिवार्यतः गिरती है। यही गणितीय आगमन सिद्धांत का आधार है।

हम जानते हैं कि प्राकृत संख्याओं का समुच्चय N वास्तविक संख्याओं का विशेष क्रमित उपसमुच्चय है। वास्तव में, R का सबसे छोटा उपसमुच्चय N है, जिसमें निम्नलिखित गुण हैं:

एक समुच्चय S आगमनिक समुच्चय (Inductive set) कहलाता है यदि 1E S और x + 1 ∈ S जब कभी.x E S. क्योंकि N, जो कि एक आगमनिक समुच्चय है, R का सबसे छोटा उपसमुच्चय है, परिणामत: R के किसी भी ऐसे उपसमुच्चय में जो आगमनिक है, N अनिवार्य रूप से समाहित होता है।

दृष्टांत

मान लीजिए कि हम प्राकृत संख्याओं 1, 2, 3, 1, के योग के लिए सूत्र प्राप्त करना चाहते हैं अर्थात् एक सूत्र जो कि " = 3 के लिए 1 + 2 + 3 का मान देता है, " = 4 के लिए 1+2+3+4 का मान देता है इत्यादि। और मान लीजिए कि हम किसी प्रकार से यह विश्वास करने के लिए प्रेरित होते n (n+1)

हैं कि सूत्र 1+2+3+...+ n =

- सही है।

2

n

यह सूत्र वास्तव में कैसे सिद्ध किया जा सकता है? हम निश्चित ही 1 के इच्छानुसार चाहे गए, धन पूर्णांक मानों के लिए कथन को सत्यापित कर सकते हैं, किंतु इस प्रक्रिया का मान के सभी मानों के लिए सूत्र को सिद्ध नहीं कर सकती है। इसके लिए एक ऐसी क्रिया श्रृंखला की आवश्यकता है, जिसका प्रभाव इस प्रकार का हो कि एक बार किसी धन पूर्णांक के लिए सूत्र के सिद्ध हो जाने के बाद आगामी धन पूर्णांकों के लिए सूत्र निरंतर अपने आप सिद्ध हो जाता है। इस प्रकार की क्रिया श्रृंखला को गणितीय आगमन विधि द्वारा उत्पन्न समझा जा सकता है।

Induction

गणित में आगमन का उपयोग प्रमाण और निष्कर्ष निकालने के लिए किया जाता है जो गणितीय प्रमेयों और उदाहरणों को समझने में मदद करता है। इन NCERT समाधान कक्षा 11 गणित अध्याय 4 गणितीय आगमन के सिद्धांत में, गणितीय आगमन के विभिन्न गुणों और अवधारणाओं को विस्तार से समझाया गया है जो सैद्धांतिक गणित का आधार बनते हैं।

इस प्रकार संक्षेप में निगमन एक प्रक्रिया है जिसमें एक कथन सिद्ध करने को दिया जाता है, जिसे गणित में प्राय: एक अनुमानित कथन (कंजेक्चर) अथवा प्रमेय कहते हैं, तर्क संगत निगमन के चरण प्राप्त किए जाते हैं और एक उपपत्ति स्थापित की जा सकती है, अथवा नहीं की जा सकती है, अर्थात् निगमन व्यापक स्थिति से विशेष स्थिति प्राप्त करने का अनुप्रयोग है।

निगमन के विपरीत, आगमन तर्क प्रत्येक स्थिति के अध्ययन पर आधारित होता है तथा इसमें प्रत्येक एवं हर संभव स्थिति को ध्यान में रखते हुए घटनाओं के निरीक्षण द्वारा एक अनुमानित कथन विकसित किया जाता है। इसको गणित में प्रायः प्रयोग किया जाता है तथा वैज्ञानिक चिंतन, जहाँ आँकड़ों का संग्रह तथा विशलेषण मानक होता है, का यह मुख्य आधार है। इस प्रकार, सरल भाषा में हम कह सकते हैं कि आगमन शब्द का अर्थ विशिष्ट स्थितियों या तथ्यों से व्यापकीकरण करने से है।

हम जानते हैं कि प्राकृत संख्याओं का समुच्चय

एक समुच्चय S आगमनिक समुच्चय (Inductive set) कहलाता है यदि 1E S और x + 1 ∈ S जब कभी.x E S. क्योंकि N, जो कि एक आगमनिक समुच्चय है, R का सबसे छोटा उपसमुच्चय है, परिणामत: R के किसी भी ऐसे उपसमुच्चय में जो आगमनिक है, N अनिवार्य रूप से समाहित होता है।