फलनों के प्राचलिक रूपों के अवकलज: Difference between revisions

From Vidyalayawiki

(added content)
(added content)
Line 1: Line 1:
किसी फ़ंक्शन का पैरामीट्रिक व्युत्पन्न।
कभी-कभी, दो चरों के बीच संबंध इतना जटिल हो जाता है कि हमें जटिलता को कम करने और इसे संभालना आसान बनाने के लिए एक तीसरा चर प्रस्तुत करना आवश्यक लगता है। इस तीसरे चर को गणित में प्राचल कहा जाता है और फ़ंक्शन को प्राचलिक  रूप में कहा जाता है। इसलिए फ़ंक्शन y(x) को स्पष्ट रूप से परिभाषित करने के बजाय, x और y दोनों को तीसरे चर के संदर्भ में परिभाषित किया जाता है। मूल रूप से, यह एक आश्रित चर का दूसरे आश्रित चर के संदर्भ में अवकलज है, और दोनों आश्रित चर एक स्वतंत्र चर पर निर्भर करते हैं। इसलिए, केवल एक समीकरण के बजाय दो समीकरण हैं। एक समीकरण x को प्राचलसे जोड़ता है और एक समीकरण y को प्राचल से जोड़ता है।


कभी-कभी, दो चरों के बीच संबंध इतना जटिल हो जाता है कि हमें जटिलता को कम करने और इसे संभालना आसान बनाने के लिए एक तीसरा चर पेश करना आवश्यक लगता है। इस तीसरे चर को गणित में पैरामीटर कहा जाता है और फ़ंक्शन को पैरामीट्रिक रूप में कहा जाता है। इसलिए फ़ंक्शन y(x) को स्पष्ट रूप से परिभाषित करने के बजाय, x और y दोनों को तीसरे चर के संदर्भ में परिभाषित किया जाता है। मूल रूप से, यह एक आश्रित चर का दूसरे आश्रित चर के संदर्भ में व्युत्पन्न है, और दोनों आश्रित चर एक स्वतंत्र चर पर निर्भर करते हैं। इसलिए, केवल एक समीकरण के बजाय दो समीकरण हैं। एक समीकरण x को पैरामीटर से जोड़ता है और एक समीकरण y को पैरामीटर से जोड़ता है।
== फलन का प्राचलिक रूप में अवकलज ==
 
किसी अन्य चर्चा में जाने से पहले प्राचलिक  फ़ंक्शन के व्यवहार को समझना बेहद ज़रूरी है। तो चलिए एक उदाहरण से शुरू करते हैं:
पैरामीट्रिक फॉर्म में व्युत्पन्न
 
किसी अन्य चर्चा में जाने से पहले पैरामीट्रिक फ़ंक्शन के व्यवहार को समझना बेहद ज़रूरी है। तो चलिए एक उदाहरण से शुरू करते हैं:


हम आमतौर पर त्वरण को इस तरह परिभाषित करते हैं:
हम आमतौर पर त्वरण को इस तरह परिभाषित करते हैं:
Line 19: Line 16:
           
           


फ़ंक्शन v और x यानी वेग और स्थिति क्रमशः समय के संदर्भ में व्यक्त किए जाते हैं जो यहाँ पैरामीटर है। इसलिए हम कह सकते हैं कि वेग v(t) के बराबर है और स्थिति x(t) के बराबर है। तो हम व्युत्पन्न विधि का उपयोग करके व्युत्पन्न dvdx की गणना कैसे करेंगे? आइए पता लगाते हैं।
फ़ंक्शन v और x यानी वेग और स्थिति क्रमशः समय के संदर्भ में व्यक्त किए जाते हैं जो यहाँ प्राचलहै। इसलिए हम कह सकते हैं कि वेग v(t) के बराबर है और स्थिति x(t) के बराबर है। तो हम अवकलज विधि का उपयोग करके अवकलज dvdx की गणना कैसे करेंगे? आइए पता लगाते हैं।


यदि x बराबर f(t) है और y बराबर g(t) है और वे पैरामीटर t के दो अलग-अलग फ़ंक्शन हैं, तो y को x के फ़ंक्शन के रूप में परिभाषित किया जा सकता है। तब:
यदि x बराबर f(t) है और y बराबर g(t) है और वे प्राचलt के दो अलग-अलग फ़ंक्शन हैं, तो y को x के फ़ंक्शन के रूप में परिभाषित किया जा सकता है। तब:


=
=

Revision as of 12:04, 2 December 2024

कभी-कभी, दो चरों के बीच संबंध इतना जटिल हो जाता है कि हमें जटिलता को कम करने और इसे संभालना आसान बनाने के लिए एक तीसरा चर प्रस्तुत करना आवश्यक लगता है। इस तीसरे चर को गणित में प्राचल कहा जाता है और फ़ंक्शन को प्राचलिक रूप में कहा जाता है। इसलिए फ़ंक्शन y(x) को स्पष्ट रूप से परिभाषित करने के बजाय, x और y दोनों को तीसरे चर के संदर्भ में परिभाषित किया जाता है। मूल रूप से, यह एक आश्रित चर का दूसरे आश्रित चर के संदर्भ में अवकलज है, और दोनों आश्रित चर एक स्वतंत्र चर पर निर्भर करते हैं। इसलिए, केवल एक समीकरण के बजाय दो समीकरण हैं। एक समीकरण x को प्राचलसे जोड़ता है और एक समीकरण y को प्राचल से जोड़ता है।

फलन का प्राचलिक रूप में अवकलज

किसी अन्य चर्चा में जाने से पहले प्राचलिक फ़ंक्शन के व्यवहार को समझना बेहद ज़रूरी है। तो चलिए एक उदाहरण से शुरू करते हैं:

हम आमतौर पर त्वरण को इस तरह परिभाषित करते हैं:

a =

     

लेकिन त्वरण की एक वैकल्पिक परिभाषा भी है जो हमें यह बताती है:

a = v

         

फ़ंक्शन v और x यानी वेग और स्थिति क्रमशः समय के संदर्भ में व्यक्त किए जाते हैं जो यहाँ प्राचलहै। इसलिए हम कह सकते हैं कि वेग v(t) के बराबर है और स्थिति x(t) के बराबर है। तो हम अवकलज विधि का उपयोग करके अवकलज dvdx की गणना कैसे करेंगे? आइए पता लगाते हैं।

यदि x बराबर f(t) है और y बराबर g(t) है और वे प्राचलt के दो अलग-अलग फ़ंक्शन हैं, तो y को x के फ़ंक्शन के रूप में परिभाषित किया जा सकता है। तब:

=

, given that

≠ 0