द्वितीय कोटि का अवकलज: Difference between revisions

From Vidyalayawiki

(formulas)
(formulas)
Line 13: Line 13:


== द्वितीय कोटि के अवकलज उदाहरण ==
== द्वितीय कोटि के अवकलज उदाहरण ==
'''प्रश्न 1)''' यदि <math>f(x) = sin3x \ cos4x</math> है, तो <math>f''(x)</math> ज्ञात कीजिए। अतः दर्शाइए कि, <math>f''(\frac{\pi}{2}) = 25</math>
'''प्रश्न''' यदि <math>f(x) = sin3x \ cos4x</math> है, तो <math>f''(x)</math> ज्ञात कीजिए। अतः दर्शाइए कि, <math>f''(\frac{\pi}{2}) = 25</math>


'''समाधान 1)''' हमारे पास है,  
'''समाधान'''   हमारे पास है,  


<math>f(x) = sin3x\ cos4x\ or, f(x) =\frac{1}{2}\cdot 2sin3x\ cos4x =\frac{1}{2} (sin7x-sinx)</math>
<math>f(x) = sin3x\ cos4x\ or, f(x) =\frac{1}{2}\cdot 2sin3x\ cos4x =\frac{1}{2} (sin7x-sinx)</math>
Line 21: Line 21:
<math>x </math> के सापेक्ष दो बार क्रमिक रूप से अवकलन करने पर, हम पाते हैं,  
<math>x </math> के सापेक्ष दो बार क्रमिक रूप से अवकलन करने पर, हम पाते हैं,  


f’(x) =7x-cosx] =And f’’(x) ==
<math>f'(x) =\frac{1}{2} cos7x\cdot [{d \over dx }7x-cosx] =\frac{1}{2} 7cos7x-cosx</math>


Therefore,f’’(π/2) ==                  =x 50 = 25(Proved)
और  <math>f''(x)=\frac{1}{2}[7(-sin7x){d \over dx}7x-(-sinx)]=\frac{1}{2}-49sin7x+sinx</math>


इसलिए,  <math>f''({\pi \over 2})= \frac{1}{2}[-49sin(7.{\pi \over 2}+ sin{\pi \over 2}= \frac{1}{2}-49\cdot (-1)+1</math>


<math>sin7\cdot \frac{\pi}{2}=sin(7.\frac{\pi}{2}+0)=-cos0=-1</math>


'''प्रश्न 2)''' If y =
<math>\frac{1}{2} \times50=25 </math>  (सिद्ध हुआ)
 
(
 
), find y₂.
 
== पैरामीट्रिक फ़ंक्शन के द्वितीय-क्रम व्युत्पन्न ==
== पैरामीट्रिक फ़ंक्शन के द्वितीय-क्रम व्युत्पन्न ==
हम पैरामीट्रिक रूप में फ़ंक्शन के द्वितीय व्युत्पन्न को निर्धारित करने के लिए दो बार चेन नियम का उपयोग करते हैं। द्वितीय व्युत्पन्न निर्धारित करने के लिए, सबसे पहले, <math>t </math> के संबंध में प्रथम व्युत्पन्न का व्युत्पन्न ज्ञात करें, फिर <math>t </math> के संबंध में <math>x </math> के व्युत्पन्न से भाग दें। यदि <math>x = x(t)</math> और  <math>y = y(t),</math> तो द्वितीय-क्रम पैरामीट्रिक रूप है:
हम पैरामीट्रिक रूप में फ़ंक्शन के द्वितीय व्युत्पन्न को निर्धारित करने के लिए दो बार चेन नियम का उपयोग करते हैं। द्वितीय व्युत्पन्न निर्धारित करने के लिए, सबसे पहले, <math>t </math> के संबंध में प्रथम व्युत्पन्न का व्युत्पन्न ज्ञात करें, फिर <math>t </math> के संबंध में <math>x </math> के व्युत्पन्न से भाग दें। यदि <math>x = x(t)</math> और  <math>y = y(t),</math> तो द्वितीय-क्रम पैरामीट्रिक रूप है:


=
<math>{dy \over dx}={(\operatorname{d}\!y/\operatorname{d}\!t) \over (\operatorname{d}\!x/\operatorname{d}\!t)}</math>    प्रथम व्युत्पन्न है।
 
is the first derivative.
 
=
 
is the second derivative.
 
=


'''Note:''' The formula
<math>{d^2y \over dx^2}={d \over dx(\operatorname{d}\!y/\operatorname{d}\!x)}</math>  दूसरा व्युत्पन्न है।


=
<math>{(\operatorname{d}\!y/\operatorname{d}\!t) \over (\operatorname{d}\!x/\operatorname{d}\!t)}={d \over dt}\ {\operatorname{d}\!y/\operatorname{d}\!x \over \operatorname{d}\!x/\operatorname{d}\!t}</math>


  is completely incorrect.
'''टिप्पणी''': सूत्र <math>{d^2y \over dx^2}= {(\operatorname{d}^2\!y/\operatorname{d}\!t^2)\over(\operatorname{d}^2\!x/\operatorname{d}\!t^2)}</math> पूर्णतः गलत है।


स्थानीय अधिकतम या निम्नतम विभक्ति बिंदु मान फ़ंक्शन के दूसरे व्युत्पन्न द्वारा निर्धारित किए जाते हैं।
स्थानीय अधिकतम या निम्नतम विभक्ति बिंदु मान फ़ंक्शन के दूसरे व्युत्पन्न द्वारा निर्धारित किए जाते हैं।


== इन्हें निम्नलिखित मानदंडों का उपयोग करके पहचाना जा सकता है: ==
== इन्हें निम्नलिखित मानदंडों का उपयोग करके पहचाना जा सकता है ==
* फ़ंक्शन <math>f(x)</math> का <math>x </math> पर स्थानीय अधिकतम मान होता है यदि <math>f''(x) < 0</math> है।
* फ़ंक्शन <math>f(x)</math> का <math>x </math> पर स्थानीय अधिकतम मान होता है यदि <math>f''(x) < 0</math> है।
* फ़ंक्शन <math>f(x)</math>का <math>x </math> पर स्थानीय न्यूनतम मान होता है यदि <math>f''(x) > 0</math> है।
* फ़ंक्शन <math>f(x)</math>का <math>x </math> पर स्थानीय न्यूनतम मान होता है यदि <math>f''(x) > 0</math> है।

Revision as of 15:55, 2 December 2024

व्युत्पन्न आपको किसी भी बिंदु पर फ़ंक्शन की ढलान प्रदान करता है। किसी फ़ंक्शन के पहले व्युत्पन्न के व्युत्पन्न को दूसरे क्रम के व्युत्पन्न के रूप में जाना जाता है। किसी दिए गए स्थान पर स्पर्शरेखा की ढलान, या उस स्थिति पर फ़ंक्शन के परिवर्तन की तात्कालिक दर, उस बिंदु पर पहले क्रम के व्युत्पन्न द्वारा निर्धारित की जाती है। द्वितीय-क्रम व्युत्पन्न हमें फ़ंक्शन के ग्राफ़ के आकार की समझ प्रदान करता है। फ़ंक्शन के दूसरे व्युत्पन्न को आमतौर पर के रूप में संक्षिप्त किया जाता है। यदि तो इसे कभी-कभी या या के रूप में व्यक्त किया जाता है।

परिभाषा

किसी फ़ंक्शन का दूसरा-क्रम व्युत्पन्न विचाराधीन फ़ंक्शन के पहले व्युत्पन्न के व्युत्पन्न से ज़्यादा कुछ नहीं है। नतीजतन, दूसरे व्युत्पन्न की गणना करके, जो समय के संबंध में गति में परिवर्तन की दर है, कार की गति में बदलाव (समय के संबंध में यात्रा की गई दूरी का दूसरा व्युत्पन्न) निर्धारित करना संभव है।

चलिए मान लेते हैं

तब

यदि अवकलनीय है, तो हम इसे '' के सापेक्ष एक बार फिर अवकलित कर सकते हैं। इस प्रकार बायाँ भाग बन जाता है, जिसे अक्सर के संबंध में का द्वितीय-क्रम व्युत्पन्न कहा जाता है।

अब, द्वितीय-क्रम व्युत्पन्न क्या है? द्वितीय-क्रम व्युत्पन्न किसी फ़ंक्शन के व्युत्पन्न का व्युत्पन्न होता है। इसे प्रथम-क्रम व्युत्पन्न से निकाला जाता है। इसलिए हम पहले फ़ंक्शन का व्युत्पन्न ढूँढ़ते हैं और फिर प्रथम व्युत्पन्न का व्युत्पन्न निकालते हैं। प्रथम-क्रम व्युत्पन्न को या के रूप में लिखा जा सकता है जबकि द्वितीय-क्रम व्युत्पन्न को या के रूप में लिखा जा सकता है

द्वितीय कोटि के अवकलज उदाहरण

प्रश्न यदि है, तो ज्ञात कीजिए। अतः दर्शाइए कि,

समाधान हमारे पास है,

के सापेक्ष दो बार क्रमिक रूप से अवकलन करने पर, हम पाते हैं,

और

इसलिए,

(सिद्ध हुआ)

पैरामीट्रिक फ़ंक्शन के द्वितीय-क्रम व्युत्पन्न

हम पैरामीट्रिक रूप में फ़ंक्शन के द्वितीय व्युत्पन्न को निर्धारित करने के लिए दो बार चेन नियम का उपयोग करते हैं। द्वितीय व्युत्पन्न निर्धारित करने के लिए, सबसे पहले, के संबंध में प्रथम व्युत्पन्न का व्युत्पन्न ज्ञात करें, फिर के संबंध में के व्युत्पन्न से भाग दें। यदि और तो द्वितीय-क्रम पैरामीट्रिक रूप है:

प्रथम व्युत्पन्न है।

दूसरा व्युत्पन्न है।

टिप्पणी: सूत्र पूर्णतः गलत है।

स्थानीय अधिकतम या निम्नतम विभक्ति बिंदु मान फ़ंक्शन के दूसरे व्युत्पन्न द्वारा निर्धारित किए जाते हैं।

इन्हें निम्नलिखित मानदंडों का उपयोग करके पहचाना जा सकता है

  • फ़ंक्शन का पर स्थानीय अधिकतम मान होता है यदि है।
  • फ़ंक्शन का पर स्थानीय न्यूनतम मान होता है यदि है।
  • यदि है, तो बिंदु के बारे में कोई निष्कर्ष निकालना असंभव है।

द्वितीय क्रम व्युत्पन्न उदाहरण:

द्वितीय क्रम व्युत्पन्नों की बेहतर समझ प्राप्त करने के लिए आइए एक उदाहरण देखें।

उदाहरण 1: यदि y = e(x³)–3x⁴ है, तो d²y/dx² का मान ज्ञात करें।

समाधान: दिया गया है कि, y = e(x³)–3x⁴

जब हम इस समीकरण को के सापेक्ष विभेदित करते हैं, तो हमें निम्नलिखित परिणाम प्राप्त होता है:

dy/dx = e(x³) x 3x² –12x³

फिर, दिए गए फ़ंक्शन के द्वितीय क्रम व्युत्पन्न को निर्धारित करने के लिए, हम के सापेक्ष एक बार फिर प्रथम व्युत्पन्न को विभेदित करते हैं, और इसी तरह आगे बढ़ते हैं।

d²y/dx² = e(x³) x 3x² x 3x² + e(x³) x 6x – 36x²

d²y/dx² = xe(x³) x (9x³ + 6) – 36x²

यह वह समाधान है जिसकी आवश्यकता है।

निष्कर्ष

हम किसी वास्तविक चर के फ़ंक्शन में परिवर्तन की दर का पता उसके तर्क के संबंध में फ़ंक्शन के व्युत्पन्न को लेकर लगा सकते हैं। व्युत्पन्न को प्रतीक द्वारा दर्शाया जाता है। अनुपात , के दिए गए मान के संबंध में में परिवर्तन की दर को इंगित करता है। फ़ंक्शन के ग्राफ़ पर स्पर्शरेखा रेखा के ढलान का उपयोग फ़ंक्शन के व्युत्पन्न को परिभाषित करने के लिए भी किया जा सकता है। दिए गए फ़ंक्शन के पहले क्रम के व्युत्पन्न के व्युत्पन्न को दूसरे क्रम के व्युत्पन्न के रूप में संदर्भित किया जाता है। यह ग्राफ़ के आकार के साथ-साथ इसकी अवतलता के बारे में जानकारी प्रदान करता है।